

AUTOMATIC AND MANUAL

CONTROL OF SPEED AND DIRECTION OF

DC MOTOR WITH RASPBERRY PI3B+

A Project report submitted in partial fulfilment

of the requirements for the degree of B. Tech in Electrical Engineering

By

Sounak Bar (11701616022)

Sayan Mallick (11701616034)

Joyjit Majumder (11701617015)

Under the supervision of :- Dr. Debasish Mondal

 (HEAD OF THE DEPARTMENT, DEPARTMENT OF ELECTRICAL

ENGINEERING, RCCIIT)

Department of Electrical Engineering

RCC INSTITUTE OF INFORMATION TECHNOLOGY

CANAL SOUTH ROAD,BELIAGHATA,KOLKATA-700015,WEST BENGAL

Maulana Abul Kalam Azad University of Technology(MAKAUT)

CERTIFICATE

To whom it may concern

This is to certify that the project work entitled AUTOMATIC AND MANUAL CONTROL OF SPEED AND

DIRECTION OF DC MOTOR WITH RASPBERRY PI3B+ is the bona fide work carried out by

SOUNAK BAR (11701616022) SAYAN MALLICK (11701616034)

JOYJIT MAJUMDER(11701617015)

students of B.Tech in the Dept. of Electrical Engineering, RCC Institute of Information Technology

(RCCIIT), Canal South Road, Beliaghata, Kolkata-700015, affiliated to Maulana Abul Kalam Azad

University of Technology (MAKAUT), West Bengal, India, during the academic year 2019-20, in

partial fulfillment of the requirements for the degree of Bachelor of Technology in Electrical

Engineering and that this project has not submitted previously for the award of any other degree,

diploma and fellowship.

Signature of the Guide Signature of the HOD

(DR. DEBASISH MONDAL) (DR. DEBASISH MONDAL)

,Electrical Department,RCCIIT HOD,Electrical Department,RCCIIT

Signature of the External Examiner

ACKNOWLEDGEMENT

It is my great fortune that I have got the opportunity to carry out this project work under the

supervision of Prof.(Dr.) Debasish Mondal, HOD, in the Department of Electrical

Engineering, RCC Institute of Information Technology (RCCIIT), Canal South Road,

Beliaghata, Kolkata-700015, affiliated to Maulana Abul Kalam Azad University of

Technology (MAKAUT), West Bengal, India. I express my sincere thanks and deepest sense

of gratitude to my guide for his constant support, unparalleled guidance and limitless

encouragement.

I wish to convey my gratitude to Prof. (Dr.) Debasish Mondal, HOD, Department of

Electrical Engineering, RCCIIT and to the authority of RCCIIT for providing all kinds of

infrastructural facility towards the research and project work.

I would also like to convey my gratitude to all the faculty members and staffs of the

Department of Electrical Engineering, RCCIIT for their whole hearted cooperation to make

this work turn into reality.

Place: KOLKATA ---

Date: 16/05/2019 Full Signature of the Student

CONTENTS

Chapters Page No

List of Acronyms and abbreviations i

List of Figures ii

Abstract iv

Chapter 1: Introduction 1

 1.1 Objectives 2

Chapter 2: Literature Survey 3

Chapter 3: Overview of the Project 4

3.1 Block Diagram 4

3.2 List of Hardware components 4

3.3 Circuit Diagram 5

Chapter 4: Component Description 6-13

4.1: Raspberry Pi 3b+ 6

4.2 DC Motor 8

4.3 Motor Driver L298N 9

4.3 IR Sensor 11

4.4 DHT11 Sensor 12

4.5 12V DC supply for motor driver 13

4.6 5V DC supply for Raspberry PI 13

Chapter 5: Software Requirements 15

Chapter 6: Theory 15

Chapter 7:Methodology 25-21

7.1 Configuring the Raspberry pi 16

7.2 Connecting the Raspberry Pi to PC 17

7.2.1 SSH 17

7.3 Required Programs are written in Python environment 18

based on following

7.3.1 Speed and direction control of a DC motor 18

7.3.2 PWM (Pulse width modulation) 19

7.4 Tkinter module of Python 20

7.5 Making the Tachometer 22

Chapter 8 Physical connection layout of project: 23

Chapter 9: Software program developed for the proposed project 24-30

9.1 Manual speed and Direction control using GUI code 24

9.2 Automatic speed control based on temperature in GUI code 28

Chapter 10 Observation and Results: 31-32

 Chapter 11 Conclusion: 34

 1.1 Future Scope 35

Chapter 12 Specification of Hardware Components 36-37

Chapter 13 References 38

Chapter 14 Datasheet 39-66

i

Acronyms and Abbreviations:

 PWM : Pulse Width Modulation

 GPIO : General purpose input/output

 RPi: Raspberry Pi

 IP: Internet Protocol

 DHT: Digital Humidity and Temperature

 IR: Infrared sensor

 GUI Graphical User Interface

 TK Tkinter

 Wifi Wireless Fidelity

 SD Storage Device

 LPDDR Low Power Double Data Rate

 LAN Local Area Network

 UI User Interface

ii

List of Figures

Figure Page no

Fig 1: Proposed block diagram of the project work 8

Fig 2: Circuit diagram of the project work 9

Fig 3: Visual representation of RPI 3B+ 10

Fig 4::GPIO pin configuration of RPI 3B+ 11

Fig 5: Pictorial view of DC motor 12

Fig 6: Schematic view of motor driver L298N 13

Fig 7: Schematic view of H-Bridge 14

Fig 8 Pin out of Motor Driver L298N 15

Fig 9: schematic representation of IR sensor 15

Fig 10: schematic representation of DHT 11 sensor 16

Fig 10: Pictorial view of 12V DC supply 17

Fig 11: Pictorial view of 5V DC supply 17

Fig 13: Tera Term connection screen 21

Fig 14: Tight VNC connection screen 21

Fig 15: Raspberry Pi desktop 22

Fig 16: Duty Cycle illustration 23

Fig 17: Tkinter Button Illustration 24

Fig 18: Tkinter Button Formatting Images 25

Fig 19: RPM measuring disc arrangement 26

iii

Fig 20: physical connection layout of Raspberry Pi 27

 with breadboard

Fig 21: Manual GUI interface along with rpm 35

of the proposed project

Fig 22: Automatic GUI interface of the 36

proposed project

Fig 23: Rpm display in proposed project 37

iv

Abstract:

Raspberry pi3B+ is a versatile and very powerful almost credit card sized computer. In

this report we use the raspberry to interface a motor driver with it in order to control the

speed and direction of a dc motor through an easy to use straight forward Graphical User

Interface. Through this GUI, everyone can easily control and monitor the speed and

direction of the DC motor without the need to know technical details about it.. A

temperature and humidity sensor is also added to make the operations automatic according

to temperature if needed. Furthermore, the inclusion of a tachometer which displays the

speed of the motor further helps to monitor and visualize the changes in speed of the

motor. An infrared sensor is used to measure the speed of the motor in this project

1

1.INTRODUCTION:

A DC motor is any of a class of rotary electrical motors that converts direct current electrical

energy into mechanical energy. The most common types rely on the forces produced by

magnetic fields. Nearly all types of DC motors have some internal mechanism, either

electromechanical or electronic, to periodically change the direction of current in part of the

motor.

DC motors were the first form of motor widely used, as they could be powered from existing

direct-current lighting power distribution systems. A DC motor’s speed can be controlled over

a wide range, using either a variable supply voltage or by changing the strength of current in

its field windings. Small DC motors are used in tools, toys, and appliances. Speed of a DC

motor can be controlled by raspberry pi 3 b+ using PWM technique.

It is a small board computer, introduced by Raspberry Pi foundation in 14th March 2018 and

is the most recent version of the Pi boards.

It is a modified form of its predecessor Raspberry Pi 3 B that was introduced in 2016 and

came with CPU, GPU, USP ports and I/O pins. Both versions are almost same in terms of

functionality and technical specifications; however, there are some exceptions in the B+

model as it comes with USB boot, network boot, and Power over Ethernet option that are not

present in the B model.

Now the PWM technique works by driving the motor with a series of “ON-OFF” pulses and

varying the duty cycle, the fraction of time that the output voltage is “ON” compared to when

it is “OFF”, of the pulses while keeping the frequency constant.

Using the Raspberry Pi, a very user friendly Graphics User Interface can be implemented which is

very easy to use and intuitive and in this project we do the same

2

1.1 Objective:

1. TO FIND THE IP ADDRESS OF RASPBERRY PI USED

2. TO CONECT RASPBERRY PI TO A PC USING ETHERNET AND ACESS THE RASPBERRY PI DEKTOP

3. TO MAKE ALL THE NECESSARY CONNECTION ACCORIDNG TO CIRCUIT DIAGARM

4. TO CREAT A GUI USING TKINTER MODULE OF PYTHON PROGRAMMING.

5. TO USE THE GUI TO CONTROLL THE SPEED AND DIRECTION OF MOTOR.

6. TO INTERFACE DHT11 (TEMPERATURE AND HUMIDITY SENSOR) WITH RASPBERRY PI

7. TO USE THE TEMPERATURE DATA TO CONTROL THE SPEED AUTOMATICALY

8. TO CREATE A RPM MEASURING ARRANGEMENT USING AN IR SENSOR AND DISPLAY IT

3

2.Literatue Survey:

 SPEED CONTROL OF DC MOTOR

Prabha Malviya(PG Student) * , Menka Dubey(Sr. Asst.prof.) EX department, Malwa institute of

Technology, Indore R.G.P.V. ,Bhopal, India

This paper deal with various method of speed control of DC Motor and literature review on speed

control of DC motor is presented. DC motors are widely used in industry applications, robotics and

domestic appliances because of its low cost and less complex control structure and wide range of speed

and torque. So wide range of position control is required. Proportional Integral Derivative (PID)

controller is used in industries for wide number of applications .The tuning of PID controller parameters

is very important for desired out response there is so many techniques for tuning of PID controller.

 R.K Munje,. “Speed control of DC motor using PI and SMC” in proc. Conference on IPEC,

Singapore, 27- 29 Oct. 2010.

In this paper, sliding mode control (SMC) technique is used to control the speed of DC motor. The

performance of the SMC is judged via MATLAB simulations using linear model of the DC motor and

known disturbance. SMC is then compared with PI controller. The simulation result shows that the

sliding mode controller (SMCr) is superior controller than PI for the speed control of DC motor. Since

the SMC is robust in presence of disturbances, the desired speed is perfectly tracked. The problem of

chattering, resulting from discontinuous controller, is handled by pseudo sliding with smooth control

action.

 A. Asadi, S. Bagheri, A. Imam, E. Jalayeri, W. Kinsner, and N. Sepehri. Institute of Electrical

and Electronics Engineers Inc. (2016)

The expanding capabilities of today’s microcontrollers and other devices lead to an increased

utilization of these technologies in diverse fields. The automation and issue of remote control of

moving objects belong to these fields. In this project, a microcontroller Raspberry Pi 2B was chosen for

controlling DC motors and servo-motors. This paper provides basic insight into issue of controlling DC

motors and servo-motors, connection between Raspberry and other components on breadboard and

programming syntaxes for controlling motors in Python programming language.

 K. Premkumar, K. G. J. Nigel. "Smart Phone Based Robotic Arm Control using Raspberry Pi,

Android and Wi-Fi."Institute of Electrical and Electronics Engineers Inc

Nowadays, there is a high demand for wireless devices controlled by Wi-Fi, GSM or Bluetooth. These

technologies offer a simplification of our lives in home automation or entertainment in the form of

Radio Controlled (RC) models. At the same time, the possibilities of microcontrollers have risen in

many applications. Current control systems are based on special purpose devices. However, little

attention is given to universal microcontrollers that are able to perform a wide variety of tasks .The

remote control via microcontrollers is more popular among researchers and “RC fans” than among the

public . The performance growth of microcontrollers has led to their ability to manage complex

applications. At the same time, there is a variety of manufacturers of microcontrollers with many

diverse types of processors and performance. Raspberry and Arduino belong to the most widely used

microcontrollers . Both of them provide high performance, and they can be used in many challenging

automation applications. The second generation of the Raspberry microcontroller provides enough

performance to replace a standard PC in some audiovisual and automation applications . With the use

of the wireless extension, which can be achieved by a simple antenna, the device becomes in a complex

control station.

4

3.OVERVIEW OF THE PROJECT:

3.1 BLOCK DIAGRAM:

Fig 1: Proposed block diagram of the project work

 3.2 LIST OF HARDWARE COMPONENTS

1. RASPBERRY PI 3B+

2. 12V DC MOTOR

3. MOTOR DRIVER L298

4. DHT 11

5. 12V DC POWER SUPPLY

6. 5V DC POWER SUPPY FOR RASPBERRY PI

7. LAN CABLE

8. BREAD BOARD

9. JUMPER WIRE

10. IR SESNOR

5

3.3 CIRCUIT DIAGRAM:

Fig 2:Circuit diagram of the project work

6

4 COMPONENT DESCRIPTION:

4.1 Raspberry PI3b+ :

Raspberry Pi is a low priced, small sized computer that plugs into a computer monitor or

TV, and uses normal peripheral like keyboard and mouse. It is a capable little device that

enables people of all ages to explore computing, and to learn how to program in

languages like Scratch and Python. It’s capable of doing everything you’d expect a

desktop computer to do, from browsing the internet and playing high-definition video, to

making spreadsheets, word-processing, and playing games. The Raspberry Pi was first

launched in 2012, and there have been a few changes and variations performed from that

point forward. The first Pi had a single core 700MHz CPU and simply 256MB RAM, and

the most recent model has a quad-core 1.4GHz CPU with 1GB RAM. All over the world,

individuals use Raspberry Pi to get the skills of programming abilities, , do home

automation, and even use them in modern applications. The Raspberry Pi works in the

open source environment: it runs Linux (diverse distribution), and its principle supported

working system, Raspbian, is open source and runs a suite of open source programming.

The Raspberry Pi Foundation adds to the Linux part and Raspberry Pi is a low cost credit

card size computer that plugs into a computer monitor or TV and uses a standard

keyboard and mouse. Most importantly it’s open source hardware. Computing

Programmable Language like python and scratch under Linux platform different other

open source extends just as releasing its very own lot programming as open source. Here

Raspberry pi is being used as a main controller to derive other features like face

recognition and detection which we are doing in our project.. Raspberry Pi 3 model B

has CPU 1400MHZ quad-core ARM cortx-A53 processor. The Ethernet adaptor is

connected to an additional USB port. In model A and A+ the USB port is connected

directly to the Silicon on Chip (SoC).

Fig 3: Visual representation of RPI 3B+

7

Pin configuration of Raspberry Pi3B+:

Fig 4:: GPIO pin configuration of RPI 3B+

A powerful feature of the Raspberry Pi is the row of GPIO (general-purpose input/output)

pins along the top edge of the board. A 40-pin GPIO header is found on all current Raspberry

Pi boards.

Voltages: Two 5V pins and two 3V3 pins are present on the board, as well as a number of

ground pins (0V), which are un-configurable. The remaining pins are all general purpose 3V3

pins, meaning outputs are set to 3V3 and inputs are 3V3-tolerant.

Outputs: A GPIO pin designated as an output pin can be set to high (3V3) or low (0V).

Inputs: A GPIO pin designated as an input pin can be read as high (3V3) or low (0V). This is

8

made easier with the use of internal pull-up or pull-down resistors. Pins GPIO2 and GPIO3

have fixed pull-up resistors, but for other pins this can be configured in software. The GPIO

pins can be used for other functions also. Some are available on all pins and others on some

specific pins.

PWM (pulse-width modulation) -Software PWM available on all pins -Hardware PWM

available on GPIO12, GPIO13, GPIO18, GPIO19

SPI

 -SPI0: MOSI (GPIO10); MISO (GPIO9); SCLK (GPIO11); CE0 (GPIO8), CE1 (GPIO7) -

SPI1: MOSI (GPIO20); MISO (GPIO19); SCLK (GPIO21); CE0 (GPIO18); CE1 (GPIO17);

I2C

 -Data: (GPIO2); Clock (GPIO3) -EEPROM Data: (GPIO0); EEPROM Clock (GPIO)

Serial

-TX (GPIO14); RX (GPIO15)

 4.2 DC motor:

Fig 5: Pictorial view of DC motor

A DC motor is any class of rotary electrical machines that converts direct current

electrical energy into mechanical energy. The most common types rely on the forces

produced by magnetic fields. Almost all types of DC motors have some internal

mechanism, either electromechanical or electronic, which periodically changes the

direction of current flow in part of the motor. A coil of wire with a current running

through it generates an electromagnetic field aligned with the center of the coil. One

can change the direction and the magnitude of the magnetic field by changing the

direction and magnitude of the current flowing through it.Nearly all types of DC

motors have some internal mechanism, either electromechanical or electronic; to

9

periodically change the direction of current flow in the part of DC motor. DC motors

were the first type widely used, since they could be powered from existing direct-

current lighting power distribution systems. A DC motor’s speed can be controlled

over a wide range, using either a variable supply voltage or by changing the strength

of current in its field windings. Small DC motors are used in tools, toys, and

appliances.

 4.3 L298N Motor Driver:

L 298 is a dual full bridge driver that has a capability to bear high voltage as well as high

current. It receives basic TTL (Transistor Transistor Logic) logic levels and is able to

operate the different loads such as DC motors, stepper motors, relays etc. L-298 has two

enable input to control any device by enabling or disabling it. L 298 IC is most commonly

used to make motor drivers or motor controllers. These motor controllers can be

controlled by any micro controller e.g Arduino, PIC, Raspberry Pi etc. hey receives input

from micro controllers and operate the load attached to their output terminals

correspondingly. L-298 motor driver (H-Bridge) is able to control two different DC

motors simultaneously. While it can control a single stepper motor as well. L 298 has two

Pulse Width Modulation (PWM) pins. PWM pins are used to control the speed of the

motor. By changing the voltage signal’s polarity at its input we can rotate the motor in

either clockwise or counter clockwise direction. L298 is a high current and high voltage

IC. Its receives TTL logic signals and operates different loads like motors, solenoid,

relays etc. It is mostly used in motor driver’s designing. It has two specific pins for

enabling or disabling the particular device attached at its output. Its features include low

saturation voltage, over temperature protection

Fig 6: Schematic view of motor driver L298N

10

The L298N works on a H-bridge principle. In the following figure an H bridge is illustrated.

 Fig 7: Schematic view of H-Bridge

When switch S1 and S4 are ON, motor spins in one direction. Now when switch s3 and S2 are On

motor spins in opposite direction. By changing which switches are turned On we can change the

direction of motor. The speed of the motor is controlled by turning the switches on and off

continuously as explained in PWM .

11

 L 298 motor controller’s each pin has different functions.

 The function associated with each of the pin are given in the table shown below.

Fig 8 Pin out of Motor Driver L298N

4.4 IR Sensor:

An infrared sensor is an electronic device, that emits in order to sense some aspects of

the surroundings. An IR sensor can measure the heat of an object as well as detects

the motion.These types of sensors measures only infrared radiation, rather than

emitting it that is called as a passive IR sensor. Usually in the infrared spectrum, all

the objects radiate some form of thermal radiations. These types of radiations are

invisible to our eyes, that can be detected by an infrared sensor.The emitter is simply

an IR LED (Light Emitting Diode) and the detector is simply an IR photodiode which

is sensitive to IR light of the same wavelength as that emitted by the IR LED. When

IR light falls on the photodiode, The resistances and these output voltages, change in

proportion to the magnitude of the IR light received.

https://www.elprocus.com/ir-remote-control-basics-operation-application/
https://www.elprocus.com/passive-infrared-pir-sensor-with-applications/
https://www.elprocus.com/explain-different-types-leds-working-applications-engineering-students/

12

 Fig 9: schematic representation of IR sensor

4.5 DHT 11:

The DHT11 is a basic, ultra low-cost digital temperature and humidity sensor. It uses a

capacitive humidity sensor and a thermistor to measure the surrounding air, and gives out

a digital signal on the data pin (no analog input pins needed). Simple to use, but requires

careful timing to grab data. We can only get new data from it once every 2 seconds, so

when using our library, sensor readings can be up to 2 seconds old. .

Fig 10: schematic representation of DHT 11 sensor

13

4.6 12V DC SUPPLY FOR MOTOR DRIVER

12V power supplies (or 12VDC power supplies) are one of the most common power supplies

in use today. In general, a 12VDC output is obtained from a 120VAC or 240VAC input using

a combination of transformers, diodes and transistors.We use a 1.5A 12V DC adapter in the

project.

Fig 11: Pictorial view of 12V DC supply

4.7 5V DC SUPPLY FOR RASPBERRY PI3B+

Recommended and easiest way to power the Raspberry Pi is via the Micro USB port on the

side of the unit. The recommended input voltage is 5V, and the recommended input current is

2A. A 5V 2.4A DC power supply is used in the project.

Fig 12: Pictorial view of 5V DC supply

14

5 Software Requirements:

A. Raspbian: Raspbian is the recommended operating system for normal use on a Raspberry Pi.

B. Python:

Python is a widely used high-level programming language for general-purpose

programming first released in 1991. An interpreted language, Python has a design

philosophy which emphasizes code readability (notably using whitespace indentation

to delimit code blocks rather than curly braces or keywords), and a syntax which

allows programmers to express concepts in fewer lines of code than possible in

languages such as C++ or Java. The language provides constructs intended to enable

writing clear programs on both a small and large scale.

C. Tera Term :

Used to connect devices over IP address

D. Advance IP scanner:

Used to scan the IP address of the devices.

E. Vnc viewer:

Used to remotely control the pi over a GUI.

15

6 THEORY:

The speed of a permanent magnet DC motor can be controlled by changing the voltage applied to

the armature.

The main principle in controlling a DC Motor with Raspberry Pi lies with the Motor Driver. A

Motor Driver is a special circuit or IC that provides the necessary power (or rather the current) to the

motor for smooth and safe operation.

Even a small 5V DC Motor draws a high initial current of around 300 – 400 mA. This current will

then fall down 150 – 200 mA as the motor gains speed.

This is a huge current for devices like Microcontrollers, Arduino, Raspberry Pi etc. Hence, we

should never connect a motor directly to Raspberry Pi

Here, a motor driver (L298N) will be used for varying speed of the motor based on PWM technique

and the motor driver is controlled via Raspberry Pi 3B+.

The motor driver (L298N) is given with two control signals from Raspberry Pi through GPIO Pins.

As per the Python Program, the motor will rotate in either forward or reverse direction.

Raspberry Pi 3B+ is an ARM architecture processor based board. There are 40 GPIO pins on the

board for connecting other modules and sensors. The Raspberry PI 3B+ will be given standard

power supply for its operation (5V) and internal use. To drive the DC motor one external 12 V DC

power supply to be connected in the circuit. It has to be noted that it is not recommended to draw

more than 50mA current from the Raspberry PI3B+ GPIO pins so an external dc power supply is

used.

In order to make a GUI, the Tkinter Python module is used. It is an inbuilt Python library used to

make GUI. The button feature in Tkinter is used to make buttons in GUI. These buttons are then

associated with their corresponding function like start, stop, increase speed, decrease speed, stop

,exit.

To change the speed of the motor, the “ChangeDutyCycle()” function is used. The function takes in

a value from 0-100 which translates from slowest speed to max speed.

For the automatic control of speed, a program is written that reads the temperature and humidity

reading from the DHT11 sensor and displays it as a label in Tkinter.

The temperature and humidity sensor DHT 11 is used to control the speed of the motor according to

the Ambient temperature.

To visualize the changes in speed of the motor a tachometer is needed. An IR sensor is used to

implement a non-contact type tachometer to measure the RPM of the DC motor.

16

7 Methodology:

 7.1 Configuring the Raspberry pi

In order to use the Raspberry Pi first an operating system is needed .

A SD card is used to install the raspberry pi. The Raspbian operating system is downloaded on it

and the sd card is inserted in the raspberry pi. It is then connected to a monitor using a HDMI

cable and powered by a 5V 2.4A micro USB power supply. The Raspberry Pi boots for the first

time. The terminal window is opened on the raspberry pi desktop and “ifconfig” command is run

which shows the IP address of the Raspberry Pi. This IP address is used to connect it to a laptop

in future and no monitor is needed henceforth.

 7.2 Connecting the Raspberry Pi to PC

When the Raspberry Pi IP address is found, now to connect to a pc we need a software called

Tera Term.

Using this software, we can connect to the Raspberry Pi and access the shell or non-graphical UI

of the raspberry.

A Rj45 or LAN cable is used to connect Raspberry Pi to the PC. Then Tera Term is opened and

the IP address of the raspberry Pi is give in. The SSH connection is selected since the connection

mode is SSH.

7.2.1 SSH

The SSH protocol uses encryption to secure the connection between a client and a server. All user

authentication, commands, output, and file transfers are encrypted to protect against attacks in the

network We can access the command line of a Raspberry Pi remotely from another computer or

device on the same network using SSH. The Raspberry Pi will act as a remote device: we can

connect to it using a client on another machine.

The IP address of our particular Raspberry Pi is put in and connection is made along with the

mentioned settings.

The default username and password is pi and raspberry respectively

17

Fig 13: Tera Term connection screen

After successful connection, in order to access the Raspberry Pi desktop we need another software

Tight VNC Viewer.

 First we need to install tight VNC server. We do that by typing following command in shell UI

sudo apt-get update

sudo apt-get install realvnc-vnc-server

Then we open Tight VNC viewer and again give ip , username and password same as before.

Fig 14: Tight VNC connection screen

18

On successful connection it will look like this

Fig 15: Raspberry Pi desktop

 7.3 Required programs are written in Python environment based on following :

 7.3.1 Speed and direction control of a DC motor

The speed of a permanent magnet dc motor can be controlled by changing the voltage applied to the

armature. If the polarity is reversed on the armature ,the motor would spin in the reverse direction.

Using this principle , the motor’s speed and direction is controlled. However, the raspberry pi cannot

directly control the speed and direction of the motor as it does not provide the necessary current and

voltage for driving the motor. Moreover, if more current is drawn from the pins of the raspberry pi

,it may get damaged.

Hence, a motor driver is needed that interfaces between the raspberry pi and the motor. The motor

driver can handle high voltage and current. In our project we use a l 298 motor driver. It is dual

bridge motor driver which means it can run two motors from one motor driver.

In order to control the speed of the motor, pulse width modulation or pwm technique is

used..

19

 7.3.2 PWM (Pulse width modulation)

Pulse-width modulation (PWM), or pulse-duration modulation (PDM), is a method of reducing

the average power delivered by an electrical signal, by effectively chopping it up into discrete parts.

The average value of voltage (and current) fed to the load is controlled by turning the switch

between supply and load on and off at a fast rate. The longer the switch is on compared to the off

periods, the higher the total power supplied to the load PWM is particularly suited for running

inertial loads such as motors, which are not as easily affected by this discrete switching, because

they have inertia to react slow. The PWM switching frequency has to be high enough not to affect

the load, which is to say that the resultant waveform perceived by the load must be as smooth as

possible.

The main advantage of PWM is that power loss in the switching devices is very low. When a switch

is off there is practically no current, and when it is on and power is being transferred to the load,

there is almost no voltage drop across the switch. Power loss, being the product of voltage and

current, is thus in both cases close to zero. PWM also works well with digital controls, which,

because of their on/off nature, can easily set the needed duty cycle..

The term duty cycle describes the proportion of 'on' time to the regular interval or 'period' of time; a

low duty cycle corresponds to low power, because the power is off for most of the time. Duty cycle

is expressed in percent, 100% being fully on. When a digital signal is on half of the time and off the

other half of the time, the digital signal has a duty cycle of 50% and resembles a "square" wave.

When a digital signal spends more time in the on state than the off state, it has a duty cycle of >50%.

When a digital signal spends more time in the off state than the on state, it has a duty cycle of <50%.

Here is a pictorial that illustrates these three scenarios:

Fig 16: Duty Cycle illustration

20

 7.4 Tkinter module of Python

Tkinter is the standard GUI library for Python. Python when combined with Tkinter provides a fast

and easy way to create GUI applications. Tkinter provides a powerful object-oriented interface to

the Tk GUI toolkit.

A program is written to incorporate a GUI to control the speed and direction of the motor.

The button and label functions are used here in the project to make the GUI. To make all the buttons

look like as needed, an image is displayed on the buttons which when pressed gives the desired

result.

Here is the “button” function of Tkinter which on pressing executes the associated function.

Another program is written to automatically control the speed and direction of the motor depending

on the temperature measured by the temperature and humidity sensor DHT 11.

 Fig 17: Tkinter Button Illustration

To format the default buttons, we display relevant images on the buttons itself. These are the images

incorporated in the buttons

21

 Fig 18: Tkinter Button Formatting Images

22

 7.5 Making the Tachometer

A tachometer (revolution-counter, tacho, rev-counter, RPM gauge) is an instrument measuring the

rotation speed of a shaft or disk, as in a motor or other machine

A disc is attached to the shaft of the motor. The disc is painted solid black with one white strip of

paper pasted to it.

An IR sensor is so placed that is detects the changed of the disc color from white to black when

the disc rotates.

On each occasion of the white strip, the program is configured to read one rpm.

The program measures how long it takes for 30 rotations to complete and then it converts the

value to rotations per minute.

Fig 19: RPM measuring disc arrangement

23

8 Physical connection layout of project:

The connection is made as per circuit diagram. Motor is connected to motor driver. The

motor driver is connected to Raspberry at GPIO pins 23,24 and 25.

The IR sensor is connected to pin 21 and a 3.3V pin out from raspberry is used to power the

IR sensor.

The DHT11 data pin is connected to pin 17 in raspberry PI and a 5V supply is taken from

the Raspberry pins to power it.

The raspberry is powered by the 5V supply and motor driver is powered by the 12V DC

supply.

The final connection is shown in the figure.

Fig 20: physical connection layout of Raspberry Pi with breadboard

24

9 Software program developed for the proposed project:

9.1 Manual speed and Direction control using GUI code

from tkinter import*

import tkinter.font

import RPi.GPIO

import RPi.GPIO as GPIO

import time

from time import sleep

RPi.GPIO.setmode(RPi.GPIO.BCM)

in1 = 24

in2 = 23

en = 25

sensor = 21 # define the GPIO pin our sensor is attached to

GPIO.setmode(GPIO.BCM)

GPIO.setup(sensor,GPIO.IN) # set our sensor pin to an input

GPIO.setup(in1,GPIO.OUT)

GPIO.setup(in2,GPIO.OUT)

GPIO.setup(en,GPIO.OUT)

GPIO.output(in1,GPIO.LOW)

GPIO.output(in2,GPIO.LOW)

p=GPIO.PWM(en,1000)

limit=20

p.start(limit)

sample = 15# how many half revolutions to time

count = 0

start = 0

end = 0

GUI def

win=Tk()

win.title("Speed and Direction Control")

myFont=tkinter.font.Font(family="Helvetica",size= 12 ,weight ="bold")

ph=PhotoImage(file="//home/pi/Desktop/run.png")

ph1=PhotoImage(file="//home/pi/Desktop/stop.png")

ph2=PhotoImage(file="//home/pi/Desktop/low increase.png")

ph3=PhotoImage(file="//home/pi/Desktop/high increase.png")

ph4=PhotoImage(file="//home/pi/Desktop/low decrease.png")

ph5=PhotoImage(file="//home/pi/Desktop/high decrease.png")

25

ph6=PhotoImage(file="//home/pi/Desktop/forward.png")

ph7=PhotoImage(file="//home/pi/Desktop/backward.png")

count =0

def rpm():

 def set_start():

 global start

 start = time.time()

 def set_end():

 global end

 end = time.time()

 def get_rpm(c):

 global count

 # delcear the count variable global so we can edit it

 if not count:

 set_start() # create start time

 count = count + 1 # increase counter by 1

 else:

 count = count + 1

 if count==sample:

 set_end() # create end time

 delta = end - start # time taken to do a half rotation in seconds

 delta = delta / 60 # converted to minutes

 rpm = (sample / delta) # converted to time for a full single rotation

 print ("RPM = ")

 print (rpm)

 count = 0 # reset the count to 0

 GPIO.add_event_detect(sensor, GPIO.RISING, callback=get_rpm) # execute the get_rpm function

when a HIGH signal is detected

##define

def run():

 temp1=1

 print("run")

 startButton["text"]="Motor is on"

 if(temp1==1):

 GPIO.output(in1,GPIO.HIGH)

 GPIO.output(in2,GPIO.LOW)

 print("forward")

26

 x='z'

 else:

 GPIO.output(in1,GPIO.LOW)

 GPIO.output(in2,GPIO.HIGH)

 print("backward")

 x='z'

 rpm()

def stop():

 print("stop")

 stopButton["text"]="Stop a"

 GPIO.output(in1,GPIO.LOW)

 GPIO.output(in2,GPIO.LOW)

 x='z'

def forward():

 print("forward")

 GPIO.output(in1,GPIO.HIGH)

 GPIO.output(in2,GPIO.LOW)

 temp1=1

 x='z'

 rpm()

def backward():

 print("backward")

 GPIO.output(in1,GPIO.LOW)

 GPIO.output(in2,GPIO.HIGH)

 temp1=0

 x='z'

def lowd():

 global limit

 print("low decrease")

 limit=limit-10

 if limit<20:

 limit=25

 p.ChangeDutyCycle(limit)

 x='z'

def mediumd():

 global limit

 print("hi decrease")

 limit=limit-30

 if limit<20:

 limit=20

 p.ChangeDutyCycle(limit)

 x='z'

27

def lowinc():

 global limit

 print("low increase")

 limit=limit+10

 if limit>100:

 limit=100

 p.ChangeDutyCycle(limit)

 x='z'

def mediuminc():

 global limit

 print("high increase")

 limit=limit+30

 if limit>100:

 limit=100

 p.ChangeDutyCycle(limit)

 x='z'

def exi():

 GPIO.cleanup()

 win.destroy()

###widgets

startButton=Button(win, text =" Start Motor ", font=myFont ,command = run)

startButton.config(image=ph,compound=BOTTOM)

startButton.grid(row=0,column=0)

stopButton=Button(win, text =" Stop Motor ",font = myFont , command = stop)

stopButton.config(image=ph1,compound=BOTTOM)

stopButton.grid(row=0,column=1)

fwdButton=Button(win, text =" Forward Rotation ",font = myFont , command =forward)

fwdButton.config(image=ph6,compound=BOTTOM)

fwdButton.grid(row=2,column=0)

bwdButton=Button(win, text =" Backward Rotation ",font = myFont , command =backward)

bwdButton.config(image=ph7,compound=BOTTOM)

bwdButton.grid(row=2,column=1)

ldButton=Button(win, text ="Low Decrease",font = myFont , command =lowd)

ldButton.config(image=ph4,compound=BOTTOM)

ldButton.grid(row=4,column=0)

28

hdButton=Button(win, text =" High Decrease ",font = myFont , command =mediumd)

hdButton.config(image=ph5,compound=BOTTOM)

hdButton.grid(row=4,column=1)

liButton=Button(win, text ="Low Increase",font = myFont , command =lowinc)

liButton.config(image=ph2,compound=BOTTOM)

liButton.grid(row=3,column=0)

hiButton=Button(win, text =" High Increase ",font = myFont , command =mediuminc)

hiButton.config(image=ph3,compound=BOTTOM)

hiButton.grid(row=3,column=1)

9.2 Automatic speed control based on temperature in GUI code

import sys

import Adafruit_DHT

from tkinter import*

import tkinter.font

import RPi.GPIO

import RPi.GPIO as GPIO

import time

from time import sleep

RPi.GPIO.setmode(RPi.GPIO.BCM)

sensor1 = 21

in1 = 24

in2 = 23

en = 25

sensor=Adafruit_DHT.DHT11

gpio=17

GPIO.setmode(GPIO.BCM)

GPIO.setup(sensor1,GPIO.IN)

GPIO.setup(in1,GPIO.OUT)

GPIO.setup(in2,GPIO.OUT)

GPIO.setup(en,GPIO.OUT)

GPIO.output(in1,GPIO.LOW)

GPIO.output(in2,GPIO.LOW)

29

p=GPIO.PWM(en,1000)

limit=15

p.start(limit)

sample = 20# how many half revolutions to time

count = 0

start = 0

end = 0

win=Tk()

var1=StringVar()

var2=StringVar()

myFont=tkinter.font.Font(family="Helvetica",size= 30 ,weight ="bold")

win.title("Automatic Control")

Label1=Label(win,textvariable=var1,width=30,height=5).pack()

Label2=Label(win,textvariable=var2,width=30,height=5).pack()

rpm1=0

def rpm():

 def set_start():

 global start

 start = time.time()

 def set_end():

 global end

 end = time.time()

 def get_rpm(c):

 global count

 # delcear the count variable global so we can edit it

 if not count:

 set_start() # create start time

 count = count + 1 # increase counter by 1

 else:

 count = count + 1

 if count==sample:

 set_end() # create end time

 delta = end - start # time taken to do a half rotation in seconds

 delta = delta / 60 # converted to minutes

 rpm1 = (sample / delta) # converted to time for a full single rotation

30

 print ("RPM = ")

 print (rpm1)

 time.sleep(4)

 count = 0 # reset the count to 0

 GPIO.add_event_detect(sensor1, GPIO.RISING, callback=get_rpm) # execute the get_rpm function

when a HIGH signal is detected

rpm()

while(1):

 humidity, temperature = Adafruit_DHT.read_retry(sensor,gpio)

 print('Temp={0:0.1f}*C Humidity={1:0.1f}%'.format(temperature,humidity))

 GPIO.output(in1,GPIO.HIGH)

 GPIO.output(in2,GPIO.LOW)

 var1.set("Centigrade ^C ---> "+str(temperature))

 var2.set("Humidity % ------> "+str(humidity))

 limit=25+((temperature-25)*2.5)

 print(limit)

 if limit>100:

 limit=100

 p.ChangeDutyCycle(limit)

 win.update()

 continue

exiButton=Button(win, text =" EXIT ",font = myFont , command =exi)

exiButton.grid(row=5,column=1)

31

10 Observation and Experimental Results :

 10.1 Manual Speed and Direction control using GUI Observation and Results :

In the manual control mode, the program when executed opens a GUI which lets the user control

the motor. The Start motor starts the motor and stop motor stops it. The forward and backward

rotation buttons spin the motor in clockwise and anticlockwise direction when pressed

respectively. The low increase and low decrease buttons increase and decrease the motor speed

slowly.

 While the high increase and high decrease buttons increase and decrease the motor speed rapidly.

The exit button closes the windows. Since the RPM function updates the rpm very rapidly, it is

displayed in the shell of the Python UI when run. Below is the pictorial view of the manual GUI

Fig 21: Manual GUI interface along with rpm of the proposed project

32

10.1 Automatic Speed control displayed in GUI Observation and Results:

 In automatic control, the DHT 11 is used to get the ambient temperature and humidity .As soon

as this is received, it is displayed as a label in Tkinter window as shown below. It shows the

temperature in centigrade and humidity in percentage. With increase in temperature, speed of the

motor increases. However, this is not rapid as the DHT 11 updates data after every 2 seconds. The

rpm is displayed in the shell UI. The pictorial view is shown in the following figures

 Fig 22: Automatic GUI interface of the proposed project

33

Fig 23: Rpm display of the proposed project

34

11 Conclusion:

1. In this project, a prototype all-inclusive DC motor sped control using GUI is

implemented.

2. The proposed system includes control and regulation of speed using the GUI. Using the

DHT sensor, automatically speed of motor is controlled based on ambient temperature.

3. The speed measuring system displays the speed in rpm in both manual GUI mode and

Automatic mode.

4. Raspberry Pi proves to be a smart, economic and efficient platform for implementing

this project.

5. The automatic system is slow to react as the DHT11 sensor has a time delay of 2

seconds before displaying last data.

6. The system can be controlled by any remote pc as long as a LAN connection is

present with the raspberry PI3B+

35

11.1 FUTURE SCOPE:

1. Our project is a prototype, hence there is a lot or room for improvement.

2. Two power supplies are used in our project. One to power the Raspberry PI3b+ and another to

power the motor driver. It would be better if one universal varying power supply was made to

provide power to both.

3. The Rpm meter is not very accurate. Since there is huge time delay between sensing signal and

transmitting it in the IR sensor, the actual rpm may vary. Also, the transition from black to white on

the rotating disc is not ideal which further adds to the error.

4. Using the rpm meter, the whole system can be made closed loop system where the RPM value can

be taken as feedback and we can fix the rpm of motor to a fixed desired value using control system

techniques.

5. The project can easily be made wireless by connecting the Raspberry Pi wirelessly to a PC using

Wifi and the whole system would become wireless.

36

12 SPECIFICATION OF HARDWARE COMPONENTS:

Raspberry Pi 3B+

 SoC: Broadcom BCM2837B0 quad-core A53 (ARMv8) 64-bit @ 1.4GHz

 GPU: Broadcom Videocore-IV

 RAM: 1GB LPDDR2 SDRAM

 Networking: Gigabit Ethernet (via USB channel), 2.4GHz and 5GHz 802.11b/g/n/ac

Wi-Fi

 Bluetooth: Bluetooth 4.2, Bluetooth Low Energy (BLE)

 Storage: Micro-SD 8 GB class 10

 GPIO: 40-pin GPIO header, populated

 Ports: HDMI, 3.5mm analogue audio-video jack, 4x USB 2.0, Ethernet, Camera

Serial Interface (CSI), Display Serial Interface (DSI)

 Dimensions: 82mm x 56mm x 19.5mm, 50g

DC Motor:

 Motor Type : DC motor

 Maximum Torque: ~0.4 Kg-cm at 12V

 RPM : 8000 RPM at 12V

 Weight

 No load current :

:145 Gms

0.13A

 Max Load Current: ~5A at 12V

IR sensor :

 5VDC Operating voltage

 I/O pins are 5V and 3.3V compliant

 Range: Up to 20cm

 Adjustable Sensing range

 Built-in Ambient Light Sensor

 20mA supply current

 Mounting hole

37

DHT 11 :

 CB size 22.0mm X 20.5mm X 1.6mm

 Working voltage 3.3 or 5V DC

 Operating voltage 3.3 or 5V DC

 Measurement range 20-95%RH；0-50℃

 Resolution 8bit（temperature），8bit（humidity）

 Compatible interfaces 2.54 3-pin interface and 4-pin Grove interface(1)

L298n :

 Dual H Bridge Motor Driver

 L298N motor driver IC

 Drives up to 2 bidirectional DC motors

 Integrated 5V power regulator

 5V – 35V drive voltage

 2A max drive current

12V DC Adapter

 Operating voltage : 100-240V AC

 Input : AC(100-240)V 50/60Hz 0.3A

 Output: 12V 2A

38

13 References:

1. https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

2. https://www.raspberrypi.org/help/quick-start-guide/2/

3. https://www.electronicshub.org/raspberry-pi-l298n-interface-tutorial-control-dc-motor-l298n-

raspberry-pi/

4. https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

5. Python Programming: An Introduction to Computer Science, by John Zelle.

6. Python Crash Course: A Hands-On, Project-Based Introduction to Programming, by Eric Matthes.

7. https://docs.python.org/2/library/tkinter.html

8. https://www.instructables.com/id/Tutorial-for-MD-L298-Motor-Driver-Module/

9. https://www.instructables.com/id/Controlling-Direction-and-Speed-of-DC-Motor-Using-/

10. https://howchoo.com/g/mjg5ytzmnjh/controlling-dc-motors-using-your-raspberry-pi

11. https://www.geeksforgeeks.org/python-gui-tkinter/

12. Head-First Python (2nd edition)by Paul Barry

13. Learn Python the Hard Way (3rd Edition) by Zed A.

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/help/quick-start-guide/2/
https://www.electronicshub.org/raspberry-pi-l298n-interface-tutorial-control-dc-motor-l298n-raspberry-pi/
https://www.electronicshub.org/raspberry-pi-l298n-interface-tutorial-control-dc-motor-l298n-raspberry-pi/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://docs.python.org/2/library/tkinter.html
https://www.instructables.com/id/Tutorial-for-MD-L298-Motor-Driver-Module/
https://www.instructables.com/id/Controlling-Direction-and-Speed-of-DC-Motor-Using-/
https://howchoo.com/g/mjg5ytzmnjh/controlling-dc-motors-using-your-raspberry-pi
https://www.geeksforgeeks.org/python-gui-tkinter/

39

DATA SHEET

Raspberry Pi 3
Model B+

1
Raspberry Pi 3 Model B+

raspberrypi.org

Overview

The Raspberry Pi 3 Model B+ is the latest product in the Raspberry Pi 3 range,
boasting a 64-bit quad core processor running at 1.4GHz, dual-band 2.4GHz
and 5GHz wireless LAN, Bluetooth 4.2/BLE, faster Ethernet, and PoE capability
via a separate PoE HAT

The dual-band wireless LAN comes with modular compliance certification,
allowing the board to be designed into end products with significantly reduced
wireless LAN compliance testing, improving both cost and time to market.

The Raspberry Pi 3 Model B+ maintains the same mechanical footprint as both
the Raspberry Pi 2 Model B and the Raspberry Pi 3 Model B.

www.raspberrypi.org

2
Raspberry Pi 3 Model B+

raspberrypi.org

Broadcom BCM2837B0, Cortex-A53
64-bit SoC @ 1.4GHz

1GB LPDDR2 SDRAM

2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless
LAN, Bluetooth 4.2, BLE
Gigabit Ethernet over USB 2.0 (maximum throughput
300Mbps)
4 × USB 2.0 ports

Extended 40-pin GPIO header

1 × full size HDMI
MIPI DSI display port
MIPI CSI camera port
4 pole stereo output and composite video port

H.264, MPEG-4 decode (1080p30); H.264 encode
(1080p30); OpenGL ES 1.1, 2.0 graphics

Micro SD format for loading operating system and
data storage

5V/2.5A DC via micro USB connector
5V DC via GPIO header
Power over Ethernet (PoE)–enabled (requires
separate PoE HAT)

Operating temperature, 0–50°C

For a full list of local and regional product approvals,
please visit www.raspberrypi.org/products/raspberry -
pi-3-model-b+

The Raspberry Pi 3 Model B+ will remain in production
until at least January 2023.

Processor:

Memory:

Connectivity:

Access:

Video & sound:

Multimedia:

SD card support:

Input power:

Environment:

Compliance:

Production lifetime:

Specifications

www.raspberrypi.org
https://www.raspberrypi.org/products/raspberry-pi-3-model-b+/

3
Raspberry Pi 3 Model B+

raspberrypi.org

Warnings

Safety instructions

This product should only be connected to an external power supply rated at 5V/2.5 A DC. Any external power
supply used with the Raspberry Pi 3 Model B+ shall comply with relevant regulations and standards applicable
in the country of intended use.

This product should be operated in a well-ventilated environment and, if used inside a case, the case should
not be covered.

Whilst in use, this product should be placed on a stable, flat, non-conductive surface and should not be
contacted by conductive items.

The connection of incompatible devices to the GPIO connection may affect compliance, result in damage to
the unit, and invalidate the warranty.

All peripherals used with this product should comply with relevant standards for the country of use and be
marked accordingly to ensure that safety and performance requirements are met. These articles include but
are not limited to keyboards, monitors, and mice when used in conjunction with the Raspberry Pi.

The cables and connectors of all peripherals used with this product must have adequate insulation so that
relevant safety requirements are met.

To avoid malfunction of or damage to this product, please observe the following:

Do not expose to water or moisture, or place on a conductive surface whilst in operation.

Do not expose to heat from any source; the Raspberry Pi 3 Model B+ is designed for reliable operation at
normal ambient temperatures.

Take care whilst handling to avoid mechanical or electrical damage to the printed circuit board and connectors.

Whilst it is powered, avoid handling the printed circuit board, or only handle it by the edges to minimise the
risk of electrostatic discharge damage.

Physical specifications

www.raspberrypi.org

HDMI is a trademark of HDMI Licensing, LLC
Raspberry Pi is a trademark of the Raspberry Pi Foundation

1 www.handsontec.com

Handson Technology

User Guide

SKU: MDU-1049

L298N Dual H-Bridge Motor Driver
This dua l bidirectional motor driver, is based on the very popular L298 Dual H-Bridge Motor Driver
Integrated Circuit. The circuit will allow you to easily and independently control two motors of up to 2A
each in both directions.It is ideal for robotic applications and well suited for connection to a microcontroller
requiring just a couple of control lines per motor. It can also be interfaced with simple manual switches,
TTL logic gates, relays, etc. This board equipped with power LED indicators, on-board +5V regulator and
protection diodes.

• Input Voltage: 3.2V~40Vdc.

Brief Data:

• Driver: L298N Dual H Bridge DC Motor Driver
• Power Supply: DC 5 V - 35 V
• Peak current: 2 Amp
• Operating current range: 0 ~ 36mA
• Control signal input voltage range :
• Low: -0.3V ≤ Vin ≤ 1.5V.
• High: 2.3V ≤ Vin ≤ Vss.
• Enable signal input voltage range :

o Low: -0.3 ≤ Vin ≤ 1.5V (control signal is invalid).
o High: 2.3V ≤ Vin ≤ Vss (control signal active).

• Maximum power consumption: 20W (when the temperature T = 75 ℃).
• Storage temperature: -25 ℃ ~ +130 ℃.
• On-board +5V regulated Output supply (supply to controller board i.e. Arduino).
• Size: 3.4cm x 4.3cm x 2.7cm

2 www.handsontec.com

Schematic Diagram:

3 www.handsontec.com

Board Dimension & Pins Function:

4 www.handsontec.com

Connection Examples:

Controlling 2-DC Motor with +5V Arduino onboard Power Supply:

Below is the circuit connection use the on-board +5V power supply from Arduino board, and should be done
without the 5V Enable Jumper on (Active 5V). This connection can drive two 5V DC motors simultaneously.

Sketch Listing:

Copy and paste the sketch below to Arduino IDE and upload to Arduino Uno/Mega board.

/*==
// Author : Handson Technology
// Project : Arduino Uno
// Description : L298N Motor Driver
// Source-Code : L298N_Motor.ino
// Program: Control 2 DC motors using L298N H Bridge Driver
//==
*/

// Definitions Arduino pins connected to input H Bridge
int IN1 = 4;
int IN2 = 5;
int IN3 = 6;
int IN4 = 7;

void setup()
{
 // Set the output pins

5 www.handsontec.com

 pinMode(IN1, OUTPUT);
 pinMode(IN2, OUTPUT);
 pinMode(IN3, OUTPUT);
 pinMode(IN4, OUTPUT);
}

void loop()
{
 // Rotate the Motor A clockwise
 digitalWrite(IN1, HIGH);
 digitalWrite(IN2, LOW);
 delay(2000);
 // Motor A
 digitalWrite(IN1, HIGH);
 digitalWrite(IN2, HIGH);
 delay(500);

 // Rotate the Motor B clockwise
 digitalWrite(IN3, HIGH);
 digitalWrite(IN4, LOW);
 delay(2000);
 // Motor B
 digitalWrite(IN3, HIGH);
 digitalWrite(IN4, HIGH);
 delay(500);

 // Rotates the Motor A counter-clockwise
 digitalWrite(IN1, LOW);
 digitalWrite(IN2, HIGH);
 delay(2000);
 // Motor A
 digitalWrite(IN1, HIGH);
 digitalWrite(IN2, HIGH);
 delay(500);

 // Rotates the Motor B counter-clockwise
 digitalWrite(IN3, LOW);
 digitalWrite(IN4, HIGH);
 delay(2000);
 // Motor B
 digitalWrite(IN3, HIGH);
 digitalWrite(IN4, HIGH);
 delay(500);
}

6 www.handsontec.com

Controlling Stepper Motor
In this example we have a typical NEMA-17 stepper motor with four wires:

The key to successful stepper motor control is identifying the wires - that is which one is which. You will need to
determine the A+, A-, B+ and B- wires. With our example motor these are red, green, yellow and blue. Now let's get
the wiring done.

Connect the A+, A-, B+ and B- wires from the stepper motor to the module connections 1, 2, 13 and 14
respectively. Place the jumpers included with the L298N module over the pairs at module points 7 and 12.
Then connect the power supply as required to points 4 (positive) and 5 (negative/GND).

Once again if your stepper motor's power supply is less than 12V, fit the jumper to the module at point 3
which gives you a neat 5V power supply for your Arduino.

Next, connect L298N module pins IN1, IN2, IN3 and IN4 to Arduino digital pins D8, D9, D10 and D11
respectively. Finally, connect Arduino GND to point 5 on the module, and Arduino 5V to point 6 if sourcing
5V from the module.

Controlling the stepper motor from your sketches is very simple, thanks to the Stepper Arduino library
included with the Arduino IDE as standard.

https://www.lelong.com.my/17hs4401s-1-7a-nema-17-stepper-motor-free-cable-handson28-188980297-2018-02-Sale-P.htm�

7 www.handsontec.com

To demonstrate your motor, simply load the “stepper_oneRevolution” sketch that is included with the
Stepper library, for example:

Finally, check the value for

 const int stepsPerRevolution = 200;

in the sketch and change the 200 to the number of steps per revolution for your stepper motor, and also the
speed which is preset to 60 RPM in the following line:

 myStepper.setSpeed(60);

Now you can save and upload the sketch, which will send your stepper motor around one revolution, then
back again. This is achieved with the function

 myStepper.step(stepsPerRevolution); // for clockwise
 myStepper.step(-stepsPerRevolution); // for anti-clockwise

Connection for the sketch “stepper_oneRevolution”:

Web Resources:

DHT11 Humidity &
Temperature Sensor

DHT11 Temperature & Humidity Sensor features a
temperature & humidity sensor complex with a
calibrated digital signal output.

Page | 2

DHT 11 Humidity & Temperature
Sensor

1. Introduction

DHT11 Temperature & Humidity Sensor features a temperature & humidity sensor
complex with a calibrated digital signal output. By using the exclusive digital-signal-acquisition
technique and temperature & humidity sensing technology, it ensures high reliability and
excellent long-term stability. This sensor includes a resistive-type humidity measurement
component and an NTC temperature measurement component, and connects to a high-
performance 8-bit microcontroller, offering excellent quality, fast response, anti-interference
ability and cost-effectiveness.

Page | 3

Each DHT11 element is strictly calibrated in the laboratory that is extremely accurate on

humidity calibration. The calibration coefficients are stored as programmes in the OTP memory,

which are used by the sensor’s internal signal detecting process. The single-wire serial interface

makes system integration quick and easy. Its small size, low power consumption and up-to-20

meter signal transmission making it the best choice for various applications, including those

most demanding ones. The component is 4-pin single row pin package. It is convenient to

connect and special packages can be provided according to users’ request.

2. Technical Specifications:

Overview:

Item Measurement
Range

Humidity
Accuracy

Temperature
Accuracy

Resolution Package

DHT11 20-90%RH

0-50 ℃
±5％RH ±2℃ 1 4 Pin Single

Row

Page | 4

Detailed Specifications:

Parameters Conditions Minimum Typical Maximum

Humidity

Resolution 1%RH 1%RH 1%RH

 8 Bit

Repeatability ±1%RH

Accuracy 25℃ ±4%RH

0-50℃ ±5%RH

Interchangeability Fully Interchangeable

Measurement
Range

0℃ 30%RH 90%RH

25℃ 20%RH 90%RH

50℃ 20%RH 80%RH

Response Time
(Seconds)

1/e(63%)25℃，
1m/s Air

6 S 10 S 15 S

Hysteresis ±1%RH

Long-Term
Stability

Typical ±1%RH/year

Temperature

Resolution 1℃ 1℃ 1℃

 8 Bit 8 Bit 8 Bit

Repeatability ±1℃

Accuracy ±1℃ ±2℃

Measurement
Range

 0℃ 50℃

Response Time
(Seconds)

1/e(63%) 6 S 30 S

Page | 5

3. Typical Application (Figure 1)

Figure 1 Typical Application

Note: 3Pin – Null; MCU = Micro-computer Unite or single chip Computer

When the connecting cable is shorter than 20 metres, a 5K pull-up resistor is recommended;

when the connecting cable is longer than 20 metres, choose a appropriate pull-up resistor as

needed.

4. Power and Pin
DHT11’s power supply is 3-5.5V DC. When power is supplied to the sensor, do not send any

instruction to the sensor in within one second in order to pass the unstable status. One

capacitor valued 100nF can be added between VDD and GND for power filtering.

5. Communication Process: Serial Interface (Single-Wire Two-Way)
Single-bus data format is used for communication and synchronization between MCU and

DHT11 sensor. One communication process is about 4ms.

Data consists of decimal and integral parts. A complete data transmission is 40bit, and the
sensor sends higher data bit first.
Data format: 8bit integral RH data + 8bit decimal RH data + 8bit integral T data + 8bit decimal T

data + 8bit check sum. If the data transmission is right, the check-sum should be the last 8bit of

"8bit integral RH data + 8bit decimal RH data + 8bit integral T data + 8bit decimal T data".

Page | 6

5.1 Overall Communication Process (Figure 2, below)
When MCU sends a start signal, DHT11 changes from the low-power-consumption mode to the

running-mode, waiting for MCU completing the start signal. Once it is completed, DHT11 sends a

response signal of 40-bit data that include the relative humidity and temperature information to

MCU. Users can choose to collect (read) some data. Without the start signal from MCU, DHT11

will not give the response signal to MCU. Once data is collected, DHT11 will change to the low-

power-consumption mode until it receives a start signal from MCU again.

Figure 2 Overall Communication Process

5.2 MCU Sends out Start Signal to DHT (Figure 3, below)
Data Single-bus free status is at high voltage level. When the communication between MCU and

DHT11 begins, the programme of MCU will set Data Single-bus voltage level from high to low

and this process must take at least 18ms to ensure DHT’s detection of MCU's signal, then MCU

will pull up voltage and wait 20-40us for DHT’s response.

Figure 3 MCU Sends out Start Signal & DHT Responses

Page | 7

5.3 DHT Responses to MCU (Figure 3, above)
Once DHT detects the start signal, it will send out a low-voltage-level response signal, which

lasts 80us. Then the programme of DHT sets Data Single-bus voltage level from low to high and

keeps it for 80us for DHT’s preparation for sending data.

When DATA Single-Bus is at the low voltage level, this means that DHT is sending the response

signal. Once DHT sent out the response signal, it pulls up voltage and keeps it for 80us and

prepares for data transmission.

When DHT is sending data to MCU, every bit of data begins with the 50us low-voltage-level and

the length of the following high-voltage-level signal determines whether data bit is "0" or "1"

(see Figures 4 and 5 below).

Figure 4 Data "0" Indication

Page | 8

Figure 5 Data "1" Indication

If the response signal from DHT is always at high-voltage-level, it suggests that DHT is not

responding properly and please check the connection. When the last bit data is transmitted,

DHT11 pulls down the voltage level and keeps it for 50us. Then the Single-Bus voltage will be

pulled up by the resistor to set it back to the free status.

6. Electrical Characteristics

VDD=5V, T = 25℃ (unless otherwise stated)

Note: Sampling period at intervals should be no less than 1 second.

7. Attentions of application

(1) Operating conditions

Applying the DHT11 sensor beyond its working range stated in this datasheet can result in 3%RH
signal shift/discrepancy. The DHT11 sensor can recover to the calibrated status gradually when
it gets back to the normal operating condition and works within its range. Please refer to (3) of

 Conditions Minimum Typical Maximum

Power Supply DC 3V 5V 5.5V

Current
Supply

Measuring 0.5mA 2.5mA

 Average 0.2mA 1mA

 Standby 100uA 150uA

Sampling
period

Second 1

Page | 9

this sec on to accelerate its recovery. Please be aware that opera ng the DHT11 sensor in the
non-normal working condi ons will accelerate sensor’s aging process.

(2) Attention to chemical materials
Vapor from chemical materials may interfere with DHT’s sensi ve-elements and debase its
sensi vity. A high degree of chemical contamina on can permanently damage the sensor.

(3) Restoration process when (1) & (2) happen
Step one: Keep the DHT sensor at the condi on of Temperature 50~60Celsius, humidity <10%RH
for 2 hours;
Step two:K keep the DHT sensor at the condi on of Temperature 20~30Celsius, humidity
>70%RH for 5 hours.

(4) Temperature ect
Rela ve humidity largely depends on temperature. Although temperature compensa on
technology is used to ensure accurate measurement of RH, it is s strongly advised to keep the
humidity and temperature sensors working under the same temperature. DHT11 should be
mounted at the place as far as possible from parts that may generate heat.

(5) Ligh t ect
Long me exposure to strong sunlight and ultraviolet may debase DHT’s performance.

(6) Connection wires
The quality of connec on wires will affect the quality and distance of communica on and high
quality shielding-wire is recommended.

(7) Other attentions
* Welding temperature should be bellow 260Celsius and contact should take less than 10
seconds.
* Avoid using the sensor under dew condi on.
* Do not use this product in safety or emergency stop devices or any other occasion that failure
of DHT11 may cause personal injury.
* Storage: Keep the sensor at temperature 10-40℃, humidity <60%RH.

Disclaimer
This is a translated version of the manufacturer's data sheet. OSEPP is not responsible for the
accuracy of the translated information.

http://www.droboticsonline.com/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 OSEPP Electronics:

 HUMI-01

http://www.mouser.com/osepp
http://www.mouser.com/access/?pn=HUMI-01

Silicon TechnoLabs IR Proximity Sensor

Product Datasheet www.silicontechnolabs.in 1

IR Proximity Sensor

Silicon TechnoLabs IR Proximity Sensor

Product Datasheet www.silicontechnolabs.in 2

1. Descriptions

The Multipurpose Infrared Sensor is an add-on for your line follower robot and obstacle
avoiding robot that gives your robot the ability to detect lines or nearby objects. The sensor
works by detecting reflected light coming from its own infrared LED. By measuring the

amount of reflected infrared light, it can detect light or dark (lines) or even objects directly in

front of it. An onboard RED LED is used to indicate the presence of an object or detect line.
Sensing range is adjustable with inbuilt variable resistor.

The sensor has a 3-pin header which connects to the microcontroller board or Arduino
board via female to female or female to male jumper wires. A mounting hole for easily

connect one or more sensor to the front or back of your robot chassis.

2. Features

 5VDC operating voltage.

 I/O pins are 5V and 3.3V compliant.

 Range: Up to 20cm.

 Adjustable Sensing range.

 Built-in Ambient Light Sensor.

 20mA supply current.

 Mounting hole.

3. Specifications

 Size: 50 x 20 x 10 mm (L x B x H)

 Hole size: φ2.5mm

4. Schematics

Silicon TechnoLabs IR Proximity Sensor

Product Datasheet www.silicontechnolabs.in 3

5. Hardware Details

IR Transmitter

IR Receiver

Variable Resistor
To set range of sensor

(0-20cm)

Digital Output to Arduino or
Microcontroller Input

GND

5V DC

Surface

Reflected Rays

Silicon TechnoLabs IR Proximity Sensor

Product Datasheet www.silicontechnolabs.in 4

6. Interface to Arduino

Now let’s we build simple object counter using IR Proximity Sensor that’s counts the

Number of objects.Connect Silicon TechnoLabs IR Proximity Sensor to your arduino board as

shown in below image.

Silicon TechnoLabs IR Proximity Sensor

Product Datasheet www.silicontechnolabs.in 5

7. Arduino Sample Code

/*

 Object counter

 Counts the number of objects and prints the results to the serial monitor.

 The circuit:

 * OUT attached to pin 2

 Created 2015

 by Harshit Borad <http://www.silicontechnolabs.in>

*/

// constants won't change. They're used here to

// set pin numbers:

const int OUT = 2; // the number of the IR Proximity Sensor pin

const int ledPin = 13;// the number of the LED pin

// variables will change:

int Number_of_Object = 0;// variable for reading the Number of Objects passing from sensor

int SensorState = 0;

void setup()

{

 Serial.begin(9600); // initialize serial communications at 9600 bps:

 pinMode(ledPin, OUTPUT); // initialize the LED pin as an output:

 pinMode(OUT, INPUT); // initialize the IR Proximity Sensor pin as an input:

}

void loop()

{

 SensorState = digitalRead(OUT);// read the state of the Sensor Signal

 // check if the Sensor Signal is HIGH then there is object in front of sensor

 // so increment Number_of_Object variable by one.

 if (SensorState == HIGH)

 {

 digitalWrite(ledPin, HIGH);// turn LED on:

 Number_of_Object++;

 Serial.println(Number_of_Object);// print the results to the serial monitor:

 }

 else

 {

 digitalWrite(ledPin, LOW);// turn LED off:

 }

}

Thank you
“Happy Coding”

