
©RCCIIT, DEPT. OF EE Page 1

AUTOMATIC BRAIN TUMOR DETECTION AND

CLASSIFICATION ON MRI IMAGES USING

MACHINE LEARNING TECHNIQUES

A Project report submitted in partial fulfilmentof the requirements for the

degree of B. Tech Electrical Engineering

By

SHREYASI GHOSH (11701616028)

Sayeri Biswas (11701616033)

Jitsona De (11701616056)

Under the supervision of

Prof. (Dr.) ALOK KOLE

DEPARTMENT OF ELECTRICAL ENGINEERING

Department of Electrical Engineering

RCC INSTITUTE OF INFORMATION TECHNOLOGY

CANAL SOUTH ROAD, BELIAGHATA, KOLKATA – 700015, WEST BENGAL

Maulana Abul Kalam Azad University of Technology (MAKAUT)

© 2020

©RCCIIT, DEPT. OF EE Page 2

Department of Electrical Engineering

RCC INSTITUTE OF INFORMATIONTECHNOLOGY

GROUND FLOOR,NEWBUILDING, CANAL SOUTH ROAD, BELIAGHATA, KOLKATA – 700015,
WESTBENGAL PHONE: 033-2323-2463-154, FAX:033-2323-4668

Email: hodeercciit@gmail.com, Website:http://www.rcciit.org/academic/ee.aspx

CERTIFICATE

To whom it may concern

This is to certify that the project work entitled AUTOMATIC BRAIN TUMOR DETECTION

AND CLASSIFICATION ON MRI IMAGES USING MACHINE LEARNING TECHNIQUES is

the bona fide work carried out by SHREYASI GHOSH (11701616028) ,SAYERI BISWAS

(11701616033),JITSONA DE (11701616056), a student of B.Tech in the Dept. of Electrical

Engineering, RCC Institute of Information Technology (RCCIIT), Canal South Road,

Beliaghata, Kolkata-700015, affiliated to Maulana Abul Kalam Azad University of Technology

(MAKAUT), West Bengal, India, during the academic year 2019-20, in partial fulfillment of

the requirements for the degree of Bachelor of Technology in Electrical Engineering and that

this project has not submitted previously for the award of any other degree, diploma

andfellowship.

Signature oftheGuide Signature of theHOD

Name: Name:

Designation: Designation:

Signature of the External Examiner

Name:

Designation:

mailto:hodeercciit@gmail.com
http://www.rcciit.org/academic/ee.aspx

©RCCIIT, DEPT. OF EE Page 3

ACKNOWLEDGEMENT

It is our great fortune that we have got the opportunity to carry out this project work under the

supervision of Prof. (Dr.) Alok Kole in the Department of Electrical Engineering, RCC

Institute of Information Technology (RCCIIT), Canal South Road, Beliaghata, Kolkata-

700015, affiliated to Maulana Abul Kalam Azad University of Technology (MAKAUT),

West Bengal, India. We express our sincere thanks and deepest sense of gratitude to our

guide for his constant support, unparalleled guidance and limitless encouragement.

We wish to convey our gratitude to Prof. (Dr.) Debasish Mondal, HOD, Department of

Electrical Engineering, RCCIIT and to the authority of RCCIIT for providing all kinds of

infrastructural facility towards the research work.

We would also like to convey our gratitude to all the faculty members and staffs of the

Department of Electrical Engineering, RCCIIT for their whole hearted cooperation to

make this work turn into reality.

 --

Full Signature of the Student(s)

Place:

Date:

©RCCIIT, DEPT. OF EE Page 4

CONTENTS

S No. TOPIC PAGE No.

1. ABSTRACT 5

2. INTRODUCTION 6-7

3. LITERARY REVIEW 8-9

4. WORKING THEORY OF OUR PROJECT 10-18

5. IMPLEMENTATION METHODOLOGY 19-24

6. FLOWCHART FOR DESIGN AND DEVELOPMENT OF PROPOSED PROJECT 25

7. PYTHON PROGRAM FOR PROPOSED PROJECT 26-36

8. EVALUATION OF THE PREDICTIVE MODEL PERFORMANCE 37-43

9. CONCLUSION 44

10. FUTURE SCOPE 45

11. BIBLIOGRAPHY 46-47

12. REFERENCES 48

©RCCIIT, DEPT. OF EE Page 5

ABSTRACT

Automated defect detection in medical imaging has become the emergent field in several

medical diagnostic applications. Automated detection of tumor in MRI is very crucial as it

provides information about abnormal tissues which is necessary for planning treatment. The

conventional method for defect detection in magnetic resonance brain images is human

inspection. This method is impractical due to large amount of data. Hence, trusted and automatic

classification schemes are essential to prevent the death rate of human. So, automated tumor

detection methods are developed as it would save radiologist time and obtain a tested accuracy.

The MRI brain tumor detection is complicated task due to complexity and variance of tumors. In

this project, we propose the machine learning algorithms to overcome the drawbacks of

traditional classifiers where tumor is detected in brain MRI using machine learning algorithms.

Machine learning and image classifier can be used to efficiently detect cancer cells in brain

through MRI.

©RCCIIT, DEPT. OF EE Page 6

INTRODUCTION

Brain tumor is one of the most rigorous diseases in the medical science. An effective and

efficient analysis is always a key concern for the radiologist in the premature phase of tumor

growth. Histological grading, based on a stereotactic biopsy test, is the gold standard and the

convention for detecting the grade of a brain tumor. The biopsy procedure requires the

neurosurgeon to drill a small hole into the skull from which the tissue is collected. There are

many risk factors involving the biopsy test, including bleeding from the tumor and brain causing

infection, seizures, severe migraine, stroke, coma and even death. But the main concern with the

stereotactic biopsy is that it is not 100% accurate which may result in a serious diagnostic error

followed by a wrong clinical management of the disease.

Tumor biopsy being challenging for brain tumor patients, non-invasive imaging

techniques like Magnetic Resonance Imaging (MRI) have been extensively employed in

diagnosing brain tumors. Therefore, development of systems for the detection and prediction of

the grade of tumors based on MRI data has become necessary. But at first sight of the imaging

modality like in Magnetic Resonance Imaging (MRI), the proper visualisation of the tumor cells

and its differentiation with its nearby soft tissues is somewhat difficult task which may be due to

the presence of low illumination in imaging modalities or its large presence of data or several

complexity and variance of tumors-like unstructured shape, viable size and unpredictable

locations of the tumor.

Automated defect detection in medical imaging using machine learning has become the

emergent field in several medical diagnostic applications. Its application in the detection of brain

tumor in MRI is very crucial as it provides information about abnormal tissues which is

necessary for planning treatment.Studies in the recent literature have also reported that automatic

computerized detection and diagnosis of the disease, based on medical image analysis, could be

a good alternative as it would save radiologist time and also obtain a tested accuracy.

Furthermore, if computer algorithms can provide robust and quantitative measurements of tumor

depiction, these automated measurements will greatly aid in the clinical management of brain

tumors by freeing physicians from the burden of the manual depiction of tumors.

©RCCIIT, DEPT. OF EE Page 7

The machine learning based approaches like Deep ConvNets in radiology and other

medical science fields plays an important role to diagnose the disease in much simpler way as

never done before and hence providing a feasible alternative to surgical biopsy for brain tumors .

In this project, we attempted at detecting and classifying the brain tumor and comparing the

results of binary and multi class classification of brain tumor with and without Transfer Learning

(use of pre-trained Keras models like VGG16, ResNet50 and Inception v3) using Convolutional

Neural Network (CNN) architecture.

©RCCIIT, DEPT. OF EE Page 8

LITERARY REVIEW

Krizhevsky et al. 2012 achieved state-of-the-art results in image classification based on transfer

learning solutions upon training a large, deep convolutional neural network to classify the 1.2

million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different

classes. On the test data, he achieved top-1 and top-5 error rates of 37.5% and 17.0% which was

considerably better than the previous state-of-the-art. He also entered a variant of this model in

the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared

to 26.2% achieved by the second-best entry. The neural network, which had 60 million

parameters and 650,000 neurons, consisted of five convolutional layers, some of which were

followed by max-pooling layers, and three fully-connected layers with a final 1000-way

Softmax. To make training faster, he used non-saturating neurons and a very efficient GPU

implementation of the convolution operation. To reduce overfitting in the fully-connected layers

he employed a recently-developed regularization method called ―dropout‖ that proved to be very

effective.

Simonyan& Zisserman 2014 they investigated the effect of the convolutional network depth on

itsaccuracy in the large-scale image recognition setting. These findings were the basis of their

ImageNet Challenge 2014 submission, where their team secured the first and the second places

in the localisation and classification tracks respectively. Their main contribution was a thorough

evaluation of networks of increasing depth using architecture with very small (3×3) convolution

filters, which shows that a significant improvement on the prior-art configurations can be

achieved by pushing the depth to 16–19 weight layers after training smaller versions of VGG

with less weight layers.

Pan & Yang 2010‘ssurvey focused on categorizing and reviewing the current progress on

transfer learning for classification, regression and clustering problems. In this survey, they

discussed the relationship between transfer learning and other related machine learning

techniques such as domain adaptation, multitask learning and sample selection bias, as well as

co-variate shift. They also explored some potential future issues in transfer learning research.In

this survey article, theyreviewed several current trends of transfer learning.

©RCCIIT, DEPT. OF EE Page 9

Szegedyet al.2015 proposed a deep convolutional neural network architecture codenamed

Inception, which was responsible for setting the new state of the art for classificationand

detection in the ImageNet Large-Scale Visual Recognition Challenge 2014(ILSVRC14). The

main hallmark of this architecture is the improved utilizationof the computing resources inside

the network. This was achieved by a carefullycrafted design that allows for increasing the depth

and width of the network whilekeeping the computational budget constant. His results seem to

yield solid evidence that approximating the expected optimal sparse structureby readily available

dense building blocks is a viable method for improving neural networks forcomputer vision.

He et al., 2015b introduced the ResNet, which utilizes ―skip connections‖ and batch

normalization.Hepresented a residual learning framework to ease the trainingof networks that are

substantially deeper than those used previously. He explicitly reformulated the layers as learning

residual functions with reference to the layer inputs, instead of learning unreferenced functions.

He provided comprehensive empirical evidence showing that these residualnetworks are easier to

optimize, and can gain accuracy fromconsiderably increased depth. On the ImageNet dataset

heevaluated residual nets with a depth of up to 152 layers—8×deeper than VGG nets but still

having lower complexity. An ensemble of these residual nets achieves 3.57% erroron the

ImageNet test set. This result won the 1st place on theILSVRC 2015 classification task. He also

presented analysison CIFAR-10 with 100 and 1000 layers.

Ref. [22] reports the accuracy achieved by seven standard classifiers, viz. i)Adaptive Neuro-

Fuzzy Classifier (ANFC), ii) Naive Bayes(NB), iii) Logistic Regression (LR), iv) Multilayer

Perceptron(MLP), v) Support Vector Machine (SVM), vi) Classification and Regression Tree

(CART), and vii) k-nearest neighbours (k-NN). The accuracy reported in Ref. [17] is on the

BRaTS 2015 dataset (a subset of BRaTS 2017 dataset) which consists of 200 HGG and 54 LGG

cases. 56 three-dimensional quantitative MRI features extracted manually from each patient MRI

and used for the classification.

©RCCIIT, DEPT. OF EE Page 10

WORKING THEORY OF OUR PROJECT:

Artificial Intelligence:

 Artificial intelligence (AI) is the simulation of human intelligence processes by

machines, especially computer systems enabling it to even mimic human behaviour. Its

applications lie in fields of Computer Vision, Natural Language Processing, Robotics, Speech

Recognition, etc. Advantages of using AI are improved customer experience, accelerate speed to

market, develop sophisticated products, enable cost optimisation, enhance employee productivity

and improve operational efficiency. Machine Learning (ML) is a subset of AI which is

programmed to think on its own, perform social interaction, learn new information from the

provided data and adapt as well as improve with experience. Although training time via Deep

Learning (DL) methods is more than Machine Learning methods, it is compensated by higher

accuracy in the former case. Also, DL being automatic, large domain knowledge is not required

for obtaining desired results unlike in ML.

Fig: A diagram showing the sub-classes of Artificial Intelligence

Brain tumor:

In medical science, an anomalous and uncontrollable cell growth inside the brain is

recognised as tumor. Human brain is the most receptive part of the body. It controls muscle

movements and interpretation of sensory information like sight, sound, touch, taste, pain, etc.

The human brain consists of Grey Matter (GM), White Matter (WM) and Cerebrospinal

Fluid (CSF) and on the basis of factors like quantification of tissues, location of abnormalities,

malfunctions & pathologies and diagnostic radiology, a presence of tumor is identified. A tumor

in the brain can affect such sensory information and muscle movements or even results in more

dangerous situation which includes death. Depending upon the place of commencing, tumor can

be categorised into primary tumors and secondary tumors. If the tumor is originated inside the

skull, then the tumor is known as primary brain tumor otherwise if the tumor‘s initiation place is

©RCCIIT, DEPT. OF EE Page 11

somewhere else in the body and moved towards the brain, then such tumors are called secondary

tumors.

Brain tumor can be of the following types-glioblastoma, sarcoma, metastatic

bronchogenic carcinoma on the basis of axial plane. While some tumours such as meningioma

can be easily segmented, others like gliomas and glioblastomas are much more difficult to

localise. World Health Organisation (WHO) categorised gliomas into - HGG/high grade

glioma/glioblastoma/IV stage /malignant & LGG/low grade glioma/II and III stage /benign.

Although most of the LGG tumors have slower growth rate compared to HGG and are

responsive to treatment, there is a subgroup of LGG tumors which if not diagnosed earlier and

left untreated could lead to GBM. In both cases a correct treatment planning (including surgery,

radiotherapy, and chemotherapy separately or in combination) becomes necessary, considering

that an early and proper detection of the tumor grade can lead to a good prognosis. Survival time

for a GBM (Glioblastoma Multiform) or HGG patient is very low i.e. in the range of 12 to 15

months.

Magnetic Resonance Imaging (MRI) has become the standard non-invasive technique for

brain tumor diagnosis over the last few decades, due to its improved soft tissue contrast that does

not use harmful radiations unlike other methods like CT(Computed Tomography), X-ray, PET

(Position Emission Tomography) scans etc. The MRI image is basically a matrix of pixels

having characteristic features.

Since glioblastomas are infiltrative tumours, their borders are often fuzzy and hard to

distinguish from healthy tissues. As a solution, more than one MRI modality is often employed

e.g. T1 (spin-lattice relaxation), T1-contrasted (T1C), T2 (spin-spin relaxation), proton density

(PD) contrast imaging, diffusion MRI (dMRI), and fluid attenuation inversion recovery (FLAIR)

pulse sequences. T1-weighted images with intravenous contrast highlight the most vascular

regions of the tumor (T 1C gives much more accuracy than T1.), called ‗Enhancing tumor‘ (ET),

along with the ‗tumor core' (TC) that does not involve peritumoral edema. T2-weighted (T2W)

and T2W-Fluid Attenuation Inversion Recovery (FLAIR) images are used to evaluate the

tumor and peritumoral edema together defined as the ‗whole tumor‘ (WT). Gliomas and

glioblastomas are difficult to distinguish in T1, T1c, T2 and PD. They are better identified in

FLAIR modalities.

©RCCIIT, DEPT. OF EE Page 12

We have attempted to separate the brain tumor into following types-necrosis (1), edema

(2), non- enhancing (malignant) (3) and enhancing (benign) (4) tumor. MRI images can be of

three types on the basis of position from which they are taken which are Sagittal (side), Coronal

(back) and Axial (top). We have used sagittal images in our project.

Process of brain tumor segmentation can be manual selection of ROI, Semi-automatic

and fully-automatic. Popular machine learning algorithms for classification of brain tumor are

Artificial Neural Network, Convolutional Neural Network, k-Nearest Neighbour (kNN),

Decision Tree, Support Vector Machine (SVM), Naïve Bayes and Random Field (RF). Here, we

are using Convolutional Neural Network (CNN) for the detection and classification of the brain

tumor.

Basic Operation of Neural Networks:

Neural Networks (NN) form the base of deep learning, a subfield of machine learning

where the algorithms are inspired by the structure of the human brain. NN take in data, train

themselves to recognize the patterns in this data and then predict the outputs for a new set of

similar data. NN are made up of layers of neurons. These neurons are the core processing units

of the network. First we have the input layer which receives the input; the output layer predicts

our final output. In between, exist the hidden layers which perform most of the computations

required by our network.

Our brain tumor images are composed of 128 by 128 pixels which make up for 16,384 pixels.

Each pixel is fed as input to each neuron of the first layer. Neurons of one layer are connected to

neurons of the next layer through channels .Each of these channels is assigned a numerical value

known as ‗weight‘. The inputs are multiplied to the corresponding weight and their sum is sent

as input to the neurons in the hidden layer. Each of these neurons is associated with a numerical

value called the ‗bias‘ which is then added to the input sum. This value is then passed through a

threshold function called the ‗activation function‘. The result of the activation function

determines if the particular neuron will get activated or not. An activated neuron transmits data

to the neurons of the next layer over the channels. In this manner the data is propagated through

the network this is called ‗forward propagation‘. In the output layer the neuron with the highest

value fires and determines the output. The values are basically a probable. The predicted output

is compared against the actual output to realize the ‗error‘ in prediction. The magnitude of the

©RCCIIT, DEPT. OF EE Page 13

error gives an indication of the direction and magnitude of change to reduce the error. This

information is then transferred backward through our network. This is known as ‗back

propagation‘. Now based on this information the weights are adjusted. This cycle of forward

propagation and back propagation is iteratively performed with multiple inputs. This process

continues until our weights are assigned such that the network can predict the type of tumor

correctly in most of the cases. This brings our training process to an end. NN may take hours or

even months to train but time is a reasonable trade-off when compared to its scope Several

experiments show that after pre-processing MRI images, neural network classification algorithm

was the best more specifically CNN(Convolutional Neural Network) as compared to Support

Vector Machine(SVM),Random Forest Field.

Fig: A multi-layer perceptron model of neural network

Input from

medical

professionals or

users

Results are

shown on IoT

based devices

or Web-based

applications

Nodes
Weights(w)

©RCCIIT, DEPT. OF EE Page 14

Transfer Learning:

A major assumption in many machine learning and data mining algorithms is that the

training and future data must be in the same feature space and have the same distribution.

However, in many real-world applications, this assumption may not hold. For example, we

sometimes have a classification task in one domain of interest, but we only have sufficient

training data in another domain of interest, where the latter data may be in a different feature

space or follow a different data distribution. In such cases, knowledge transfer, if done

successfully, would greatly improve the performance of learning by avoiding much expensive

data labelling efforts. In recent years, transfer learning has emerged as a new learning framework

to address this problem.

Transfer learning allows neural networks using significantly less data .With transfer

learning, we are in effect transferring the ‗knowledge‘ that a model has learned from a previous

task, to our current one. The idea is that the two tasks are not totally disjoint, as such we can

leverage whatever network parameters that model has learned through its extensive training,

without having to do that training ourselves. Transfer learning has been consistently proven to

boost model accuracy and reduce required training time, less data, less time, more accuracy.

Transfer learning is classified to three different settings: inductive transfer learning, transductive

transfer learning and unsupervised transfer learning. Most previous works focused on the

settings. Furthermore, each of the approaches to transfer learning can be classified into four

contexts based on ―what to transfer‖ in learning. They include the instance-transfer approach, the

feature-representation-transfer approach, the parameter transfer approach and the relational-

knowledge-transfer approach, respectively.

The smaller networks converged & were then used as initializations for the larger, deeper

networks- This process is called pre-training. While making logical sense, pre-training is a very

time consuming, tedious task, requiring an entire network to be trained before it can serve as an

initialization for a deeper network.

Activation Function:

Sigmoid function ranges from 0 to 1 and is used to predict probability as an output in

case of binary classification while Softmax function is used for multi-class classification. tanh

function ranges from -1 to 1 and is considered better than sigmoid in binary classification using

feed forward algorithm. ReLU (Rectified Linear Unit) ranges from 0 to infinity and Leaky ReLU

©RCCIIT, DEPT. OF EE Page 15

(better version of ReLU) ranges- from -infinity to +infinity. ReLU stands for Rectified Linear

Unit for a non-linear operation. The output is ƒ(x) = max(0,x).ReLU‘s purpose is to introduce

non-linearity in our ConvNet. Since, the real world data would want our ConvNet to learn would

be non-negative linear values. There are other nonlinear functions such as tanh or sigmoid that

can also be used instead of ReLU. Most of the data scientists use ReLU since performance wise

ReLU is better than the other two.

Stride is the number of pixels that would move over the input matrix one at a time.

Sometimes filter does not fit perfectly fit the input image. We have two options: either

pad the picture with zeros (zero-padding) so that it fits or drop the part of the image where the

filter did not fit. This is called valid padding which keeps only valid part of the image.

Convolutional Neural Network:

Classifier models can be basically divided into two categories respectively which are

generative models based on hand- crafted features and discriminative models based on

traditional learning such as support vector machine (SVM), Random Forest (RF) and

Convolutional Neural Network (CNN). One difficulty with methods based on hand-crafted

features is that they often require the computation of a large number of features in order to be

accurate when used with many traditional machine learning techniques. This can make them

slow to compute and expensive memory-wise. More efficient techniques employ lower numbers

of features, using dimensionality reduction like PCA (Principle Component Analysis) or feature

selection methods, but the reduction in the number of features is often at the cost of reduced

accuracy. Brain tumour segmentation employ discriminative models because unlike generative

modelling approaches, these approaches exploit little prior knowledge on the brain‘s anatomy

and instead rely mostly on the extraction of [a large number of] low level image features, directly

modelling the relationship between these features and the label of a given voxel.

In our project, we have used the Convolutional Neural Network architecture for Brain

tumor Detection and Classification.

Convolutional neural network processes closely knitted data used for image

classification, image processing, face detection etc. It is a specialised 3D structure with

specialised NN analysing RGB layers of an image .Unlike others, it analyses one image at a time

,identifies and extracts important features and uses them to classify the image .Convolutional

©RCCIIT, DEPT. OF EE Page 16

Neural Networks (ConvNets) automatically learns mid-level and high-level representations or

abstractions from the input training data. The main building block used to construct a CNN

architecture is the convolutional layer. It also consists of several other layers, some of which are

described as bellow:

 Input Layer-It takes in the raw pixel value of input image

 Convolutional Layer- It is the first layer to extract features from an input image.

Convolution preserves the relationship between pixels by learning image features using

small squares of input data. It is a mathematical operation that takes two inputs such as

image matrix and a filter or kernel to generate a feature map Convolution of an image

with different filters can perform operations such as edge detection, blur and sharpen by

applying filters.

 Activation Layer-It produces a single output based on the weighted sum of inputs

 Pooling Layer-Pooling layers section would reduce the number of parameters when the

images are too large. Spatial pooling (also called subsampling or down sampling) reduces

the dimensionality of each map but retains important information. Spatial pooling can be

of different types:

o Max Pooling – taking the largest element in the feature map

o Average Pooling - taking the average of elements in the feature map

o Sum Pooling – taking the sum of all elements in the feature map

 Fully Connected Layer-The layer we call as FC layer, we flattened our matrix into vector

and feed it into a fully connected layer like a neural network. the feature map matrix will

be converted as column vector (x1, x2, x3, …). With the fully connected layers, we

combined these features together to create a model. Forclassifying input image into

various classes based on training set.

 Dropout Layer-It prevents nodes in a network from co-adapting to each other.

©RCCIIT, DEPT. OF EE Page 17

Advantages-

1. It is considered as the best ml technique for image classification due to high accuracy.

2. Image pre-processing required is much less compared to other algorithms.

3. It is used over feed forward neural networks as it can be trained better in case of complex

images to have higher accuracies.

4. It reduces images to a form which is easier to process without losing features which are

critical for a good prediction by applying relevant filters and reusability of weights

5. It can automatically learn to perform any task just by going through the training data i.e.

there no need for prior knowledge

6. There is no need for specialised hand-crafted image features like that in case of SVM,

Random Forest etc.

Disadvantages-

1. It requires a large training data.

2. It requires appropriate model.

3. It is time consuming.

4. It is a tedious and exhaustive procedure.

5. While convolutional networks have already existed for a long time, their success was

limited due to the size of the considered network.

Solution-Transfer Learning for inadequate data which will replace the last fully connected layer

with pre-trained ConvNet with new fully connected layer.

Fig: A diagram of a model trained from scratch using CNN architecture.

Input Layer Activation Layer
Convolutional

Layer

Batch
Normalisation

Layer

Max Pooling
Layer

Fully Connected
Layer

Dropout LayerFlatten LayerDense LayerOutput Layer

©RCCIIT, DEPT. OF EE Page 18

Evaluation Metrics:

 True Positive (TP) is the HGG class predicted in the presence of the LGG class of the

glioma. True Negative (TN) is the LGG class predicted in the absence of the HGG class

of glioma. False Positive (FP) is prediction of HGG class in the absence of LGG class.

False Negative (FN) is prediction of LGG class in the absence of HGG class.

 Accuracy is the most intuitive performance measure. Accuracy is the amount of correctly

prediction made by the total number of predictions made. Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

 Precision is defined as the number of true positives divided by the number of true

positives plus the number of false positives.Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

 Recall is also known as sensitivity. It is the fraction of the total amount of relative

relevant instances that were actually retrieved.Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁

 F 1 Score is the weighted average or the harmonic mean of Precision and Recall taking

both metrics into account in the following equation: F1 Score = 2 x
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑟𝑒𝑐𝑎𝑙𝑙

.When we have an unbalanced dataset F 1 Score favoured over accuracy because it takes

both false positives and false negatives into account. F-measures are used to balance the

ratio of false negatives using a weighting parameter (beta) it is given as F = 𝑃 ∗ 𝑅
(1+𝛽)2

(𝑃+𝑅)𝛽2

 Other performance metrics used are: sensitivity, specificity and error rate. Sensitivity

represents the probability of predicting actual HGG class. Specificity value defines

prediction of LGG class. They allow us to determine potential of over- or under-

segmentations of the tumor sub-regions. The error rate (ERR) is the amount of predicted

class that have been incorrectly classified by a decision model. The overall classification

is also provided by the Area under the Curve (AUC) that represents better classification if

the area under the curve is more. All of these performances metric is evaluated for

FLAIR sequences.

 The DSC(dice similarity co-efficient) measures the overlap between the manual

delineated brain tumour regions and the segmentation results of our fully automatic

method that is. Mathematically, dice score/DSC is the number of false positives divided

by the number of positives added with the number of false positives. DSC =
2𝑇𝑃

𝐹𝑃+𝑇𝑃+𝐹𝑁

and Dice loss =
2 𝑋1⊓𝑌1

 𝑋1 + 𝑌1

©RCCIIT, DEPT. OF EE Page 19

IMPLEMENTATION METHODOLOGY:

Software Requirements:

Python 3 - We have used Python which is a statistical mathematical programming

language like R instead of MATLAB due to the following reasons:

 1. Python code is more compact and readable than MATLAB

2. The python data structure is superior to MATLAB

3. It is an open source and also provides more graphic packages and data sets

Keras (with TensorFlow backend 2.3.0 version) - Keras is a neural network API consisting of

TensorFlow, CNTk, Theano etc.

Python packages like Numpy, Matplotlib, Pandas for mathematical computation and

plotting graphs, SimpleITK for reading the images which were in .mha format and Mahotas for

feature extraction of GLCM

Kaggle was used to obtain the online dataset.

GitHub and Stackoverflow was used for reference in case of programming syntax errors.

OpenCV (Open Source Computer Vision) is a library of programming functions aimed at

real time computer vision i.e. used for image processing and any operations relating to image

like reading and writing images, modifying image quality, removing noise by using Gaussian

Blur, performing binary thresholding on images, converting the original image consisting of

pixel values into an array, changing the image from RGB to grayscale etc. It is free to use,

simple to learn and supports C++, Java, C, Python. Its popular application lies in CamScanner or

Instagram, GitHub or a web-based control repository.

Google Colaboratory (open-source Jupyter Notebook interface with high GPU facility) -

Google Colab /Colaboratory is a free Jupyter notebook environment that requires no setup and

runs entirely on cloud. With Colab, one can write and execute code, save and share analyses,

access powerful computing resources, all for free from browser.[Jupyter Notebook is a powerful

way to iterate and write on your Python code for data analysis. Rather than writing and rewriting

an entire code, one can write lines of code and run them at a time. It is built off of iPython which

©RCCIIT, DEPT. OF EE Page 20

is an interactive way of running Python code. It allows Jupyter notebook to support multiple

languages as well as storing the code and writing own markdown.]

Hardware Requirements:

Processor: Intel® Core™ i3-2350M CPU @ 2.30GHz

Installed memory (RAM):4.00GB

System Type: 64-bit Operating System

Image Acquisition:

Kaggle dataset:

Images can be in the form of .csv (comma separated values), .dat (data) files in grayscale,

RGB, or HSV or simply in .zip file as was in the case of our online Kaggle dataset. It contained

98 healthy MRI images and 155 tumor infected MRI images.

BRaTS MICCAI dataset:

The Multimodal Brain Tumor Segmentation (BRaTS) MICCAI has always been focusing

on the evaluation of state-of-the-art methods for the segmentation of brain tumors in magnetic

resonance imaging (MRI) scans. Ample multi-institutional routine clinically-acquired

multimodal MRI scans of glioblastoma (GBM) and lower grade glioma (LGG), with

pathologically confirmed diagnosis and available OS, was provided as the training, validation

and testing data for BRaTS 2015 challenge. All BRaTS multimodal scans are available as NIfTI

files (.nii.gz) and these multimodal scans describe a) native (T1) and b) post-contrast T1-

weighted (T1c), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion Recovery (FLAIR)

volumes, and were acquired with different clinical protocols and various scanners from multiple

institutions. They described a mixture of pre- and post-operative scans and their ground truth

labels have been annotated by the fusion of segmentation results from algorithms. All the

imaging datasets have been segmented manually, by one to four raters, following the same

annotation protocol, and their annotations were approved by experienced neuro-radiologists.

Annotations comprise the whole tumor, the tumor core (including cystic areas), and the C-

enhancing tumor core.

The dataset contains 2 folders for the purpose of training and testing. The 'train' folder

contains 2 sub-folders of HGG and LGG cases-220 patients of HGG and 27 patients of

©RCCIIT, DEPT. OF EE Page 21

LGG. The ‗test‘ folder contains brain images of 110 Patients with HGG and LGG cases

combined. There are 5 different MRI image modalities for each patient which are T1, T2,

T1C, FLAIR, and OT (Ground truth of tumor Segmentation). All these image files are

stored in .mha format and are of the size of 240x240, resolution of (1 mm^3) and skull-

stripped. In the ground truth images, each voxel is labelled with zeros and non-zeros,

corresponding to the normal pixel and parts of tumor cells, respectively.

Fig: 1.Online Kaggle dataset(above two) 2. BRaTS MICCAI dataset (below)

Data Augmentation:

Data augmentation consists of Grey Scaling(RGB/BW to ranges of

grey),Reflection(vertical/horizontal flip),Gaussian Blur(reduces image noise),Histogram

equalisation(increases global contrast),Rotation(may not preserve image

size),Translation(moving the image along x or y axis), linear transformation such as random

rotation (0-10 degrees), horizontal and vertical shifts, and horizontal and vertical flips. Data

©RCCIIT, DEPT. OF EE Page 22

augmentation is done to teach the network desired invariance and robustness properties, when

only few training samples are available.

Image Pre-Processing:

Our pre-processing includes rescaling, noise removal to enhance the image, applying

Binary Thresholding and morphological operations like erosion and dilation, contour forming

(edge based methodology). In the first step of pre-processing, the memory space of the image is

reduced by scaling the gray-level of the pixels in the range 0-255. We used Gaussian blur filter

for noise removal as it is known to give better results than Median filter since the outline of brain

is not segmented as tumor here.

Segmentation:

Brain tumor segmentation involves the process of separating the tumor tissues (Region of

Interest – ROI) from normal brain tissues and solid brain tumor with the help of MRI images or

other imaging modalities. Its mechanism is based on identifying similar type of subjects inside

an image and forms a group of such by either finding the similarity measure between the objects

and group the objects having most similarity or finding the dissimilarity measure among the

objects and separate the most dissimilar objects in the space. Segmentation algorithms can be of

two type which are bi-clusters (2 sub-parts) or multi-clustered (more than 2 sub-parts)

algorithms. Segmentation can be done by using-Edge Detection, Region Growing, Watershed,

Clustering via FCM, Spatial Clustering, Split and Merge Segmentation and Neural Network via

MLP(ANN+DWT).

In order to identify the tumor region from the brain image, Binary Thresholding can be

used (via Region Growing method), which converts a gray scale image to binary image based on

the selected threshold values. The problems associated with such approach are that binary image

results in loss of texture and the threshold value comes out be different for different images.

Hence, we are looking for a more advanced segmentation algorithm, the watershed algorithm by

using Otsu Binarisation.

Feature Extraction:

Feature Extraction is the mathematical statistical procedure that extracts the quantitative

parameter of resolution changes/abnormalities that are not visible to the naked eye. Examples of

©RCCIIT, DEPT. OF EE Page 23

such features are Entropy, RMS, Smoothness, Skewness, Symmetry, Kurtosis, Mean, Texture,

Variance, Centroid, Central Tendency, IDM (Inverse Difference Moment

),Correlation,Energy,Homogeneity,Dissimilarity,Contrast,Shade,Prominence,Eccentricity,

Perimeter, Area and many more.

Feature Extraction is identifying abnormalities. We need to extract some features from

images as we need to do classification of the images using a classifier which needs these features

to get trained on. We chose to extract GLCM (texture-based features). Gray Level Co-occurrence

Matrix (GLCM) features are based on probability density function and frequency of occurrence

of similar pixels. GLCM is a statistical method of examining texture that considers the spatial

relationship of pixels.

Machine Learning Training and Testing:

Models for image classification with weights on ImageNet are

Xception,VGG16,VGG19,ResnNet,ResNet2, ResNet 50, Inception v2, Inception v3, MobileNet,

MobileNet v2, ,DenseNet, AlexNet, GoogleNet, NasNet etc. For the implementation of Transfer

Learning in our project, we have chosen VGG16, ResNet50 and Inception v3 as out samples.

 After training the model, we need to validate and fine-tune the parameters and finally test

the model on unknown samples where the data undergoes feature extraction on the basis of

which the model can predict the class by matching corresponding labels. To achieve this, we can

either split our dataset in the ratio of -60/20/20 or 70/20/10. We have used the former one.

For a given training dataset, back-propagation learning may proceed in one of the

following two basic ways:

o Pattern/Sequential/Incremental mode where the whole sequence of forward and backward

computation is performed resulting in weight adjustment for each pattern. It again starts

from the first pattern till errors are minimised, within acceptable levels. It is done online,

requires less local storage, faster method and is less likely to be trapped in local minima.

o Batch mode where the weight upgradation is done after all the N training sets or ‗epochs‘

are presented. After presentation of the full set, weights are upgraded and then again the

whole batch/set is presented iteratively till the minimum acceptable error is arrived at by

comparing the target and actual outputs. Training stops when a given number of epochs

elapse or when the error reaches an acceptable level or when the error stops improving.

©RCCIIT, DEPT. OF EE Page 24

We have used this mode during our Machine Learning training by taking the value of N

as 30.

In supervised network, the network learns by comparing the network output with the correct

answer. The network receives feedback about the errors by matching the corresponding labels

and weights in different layers and adjusts its weights to minimise the error. It is also known as

learning through teacher or ‗Reinforced Learning‘.

In unsupervised network, there is no teacher i.e. labels are not provided along with the data to

the network. Thus, the network does not get any feedback about the errors. The network itself

discovers the interesting categories or features in the input data. In many situations, the learning

goal is not known in terms of correct answers. The only available information is in the

correlation of input data or signals. The unsupervised networks are expected to recognise the

input patterns, classify these on the basis of correlations and produce output signals

corresponding to input categories. It is a type of dynamic programming that trains algorithm

using a system of reward and punishment. Agent learns without human interaction and examples

and only by interacting with the environment. For our purpose, we have used supervised network

or Reinforced Learning for training our model.

Fig: A diagram showing Unsupervised (left) and Supervised Learning Network (right)

©RCCIIT, DEPT. OF EE Page 25

FLOWCHART FOR DESIGN AND DEVELOPMENT OF

PROPOSED PROJECT

Analysis and Conclusion

Validation on unknown test samples

Tumor detection and classification

Machine Learning training

Model construction

Feature extraction

Segmentation via binary thresholding

Image pre-processing

Data Collection

©RCCIIT, DEPT. OF EE Page 26

PYTHON PROGRAM FOR THE PROPOSED PROJECT

Import necessary Python packages:

importnumpyas np

importmatplotlib.pyplotasplt

frommatplotlibimportpyplot

fromnumpyimportexpand_dims

import pandas aspd

importtensorflowastf

fromtqdmimporttqdm

import cv2

importimutils

importshutil

importitertools

importseabornassns

importumap

from PIL import Image

fromscipyimportmisc

fromosimportlistdir

fromos.pathimportisfile, join

fromscipyimportmisc

from random import shuffle

from collections import Counter

fromsklearn.decompositionimport PCA

fromsklearn.manifoldimport TSNE

fromitertoolsimport chain

importos

import sys

import random

import warnings

from skimage.io import imread,imshow,imread_collection,concatenate_images

fromskimage.transformimport resize

fromskimage.morphologyimport label

fromsklearn.preprocessingimportLabelBinarizer

fromsklearn.model_selectionimporttrain_test_split

fromsklearn.utilsimport shuffle

fromsklearn.decompositionimport PCA

fromsklearn.manifoldimport TSNE

fromsklearn.datasetsimportmake_circles

fromsklearn.metricsimportaccuracy_score,confusion_matrix

fromsklearn.metricsimport f1_score

fromsklearn.metricsimportprecision_score

fromsklearn.metricsimportrecall_score

fromsklearn.metricsimportcohen_kappa_score

fromsklearn.metricsimportroc_auc_score

fromtensorflow.keras.layersimport Conv2D, Input, ZeroPadding2D,BatchNormalization, Activation,

MaxPooling2D, Flatten, Dense

fromtensorflow.keras.modelsimport Model,load_model

fromtensorflow.keras.callbacksimportTensorBoard,ModelCheckpoint

©RCCIIT, DEPT. OF EE Page 27

importplotly.graph_objsas go

fromplotly.offlineimportinit_notebook_mode,iplot

fromplotlyimport tools

from keras.applications.vgg16 import VGG16,preprocess_input

from keras.applications.inception_v3 import InceptionV3,inception_v3

from keras.applications.resnet50 import ResNet50,resnet50

fromkeras.preprocessing.imageimportImageDataGenerator

fromkeras.preprocessing.imageimportload_img

fromkeras.preprocessing.imageimportimg_to_array

fromkerasimport layers

fromkeras.modelsimport Model, Sequential

fromkeras.modelsimport Model,load_model

fromkeras.utils.np_utilsimportto_categorical

fromkeras.layersimport Input

fromkeras.layersimport Activation, Flatten, Dense

fromkeras.layers.coreimport Dropout, Lambda

fromkeras.layers.convolutionalimport Conv2D, Conv2DTranspose

fromkeras.layers.poolingimport MaxPooling2D

fromkeras.layers.mergeimport concatenate

fromkeras.optimizersimport Adam,RMSprop

fromkeras.callbacksimportEarlyStopping,ModelCheckpoint

fromkerasimport backend as K

importkeras

init_notebook_mode(connected=True)

RANDOM_SEED =123

fromIPython.displayimportclear_output

!pip installimutils

clear_output()

Uploading the dataset:

fromzipfileimportZipFile

file_name='data.zip'

withZipFile(file_name,'r')aszipObj:

zipObj.extractall()

print('done')

Data Augmentation:

defaugment_data(fdir,sdir,num):

img_gen=ImageDataGenerator(rotation_range=15,

width_shift_range=0.05,

height_shift_range=0.05,

 rescale=1./255,

shear_range=0.05,

brightness_range=(0.1,1.5),

horizontal_flip=True,

vertical_flip=True,

fill_mode='nearest')

©RCCIIT, DEPT. OF EE Page 28

for file inos.listdir(fdir):

image=cv2.imread(fdir+'/'+file)

image=image.reshape((1,)+image.shape)

prefix='aug_'+ file[:-4]

i=0

forbatch in

img_gen.flow(x=image,batch_size=1,save_to_dir=sdir,save_prefix=prefix,save_format='jpg'):

i+=1

if(i>num):

break
%%time

sdir='/content/data'

augment_data('/content/data/yes/',sdir+'/yes',6)

augment_data('/content/data/no/',sdir+'/no',9)

defsummary():

yes='/content/data/yes/'

no='/content/data/no/'

nyes=len(os.listdir(yes))

nno=len(os.listdir(no))

ntotal=nyes+nno

print('Total Images : ',ntotal)

print('Yes Images : {} ({}%)'.format(nyes,np.round((nyes/ntotal*1.0)*100),3))

print('No Images : {} ({}%)'.format(nno,np.round((nno/ntotal*1.0)*100),3))

Splitting the dataset into TRAIN, TEST and VAL and feature

extraction:

!apt-get install tree

!mkdir TRAIN TEST VAL TRAIN/YES TRAIN/NO TEST/YES TEST/NO VAL/YES VAL/NO

!tree -d

IMG_PATH ='/content/brain_tumor_dataset'

for CLASS inos.listdir(IMG_PATH):

ifnotCLASS.startswith('.'):

 IMG_NUM =len(os.listdir(IMG_PATH +'/'+ CLASS))

for(n, FILE_NAME)inenumerate(os.listdir(IMG_PATH +'/'+ CLASS)):

img= IMG_PATH +'/'+ CLASS +'/'+ FILE_NAME

if n <5:

shutil.copy(img,'TEST/'+CLASS.upper()+'/'+ FILE_NAME)

elif n <0.8*IMG_NUM:

shutil.copy(img,'TRAIN/'+CLASS.upper()+'/'+ FILE_NAME)

else:
shutil.copy(img,'VAL/'+CLASS.upper()+'/'+ FILE_NAME)

defload_data(dir_path,img_size=(100,100)):

 X =[]

 y =[]

i=0

labels=dict()

©RCCIIT, DEPT. OF EE Page 29

for path intqdm(sorted(os.listdir(dir_path))):

ifnotpath.startswith('.'):

labels[i]= path

for file inos.listdir(dir_path+ path):

ifnotfile.startswith('.'):

img= cv2.imread(dir_path+'/'+ path +'/'+ file)

X.append(img)

y.append(i)

i+=1

 X =np.array(X)

 y =np.array(y)

print(f'{len(X)} images loaded from {dir_path} directory.')

return X, y, labels

TRAIN_DIR ='TRAIN/'

TEST_DIR ='TEST/'

VAL_DIR ='VAL/'

IMG_SIZE =(224,224)

X_train,y_train, labels =load_data(TRAIN_DIR, IMG_SIZE)

X_test,y_test, _ =load_data(TEST_DIR, IMG_SIZE)

X_val,y_val, _ =load_data(VAL_DIR, IMG_SIZE)

Image pre-processing and performing binary thresholding:

defcrop_imgs(set_name,add_pixels_value=0):

set_new=[]

forimginset_name:

gray= cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

gray= cv2.GaussianBlur(gray,(5,5),0)

thresh= cv2.threshold(gray,45,255, cv2.THRESH_BINARY)[1]

thresh= cv2.erode(thresh,None, iterations=2)

thresh= cv2.dilate(thresh,None, iterations=2)

cnts= cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

cnts=imutils.grab_contours(cnts)

 c =max(cnts, key=cv2.contourArea)

extLeft=tuple(c[c[:,:,0].argmin()][0])

extRight=tuple(c[c[:,:,0].argmax()][0])

extTop=tuple(c[c[:,:,1].argmin()][0])

extBot=tuple(c[c[:,:,1].argmax()][0])

 ADD_PIXELS =add_pixels_value

new_img=img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS,extLeft[0]-

ADD_PIXELS:extRight[0]+ADD_PIXELS].copy()

set_new.append(new_img)

returnnp.array(set_new)

img= cv2.imread('/content/brain_tumor_dataset/yes/Y108.jpg')

img= cv2.resize(

img,

©RCCIIT, DEPT. OF EE Page 30

dsize=IMG_SIZE,

interpolation=cv2.INTER_CUBIC

)
gray= cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

gray= cv2.GaussianBlur(gray,(5,5),0)

thresh= cv2.threshold(gray,45,255, cv2.THRESH_BINARY)[1]

thresh= cv2.erode(thresh,None, iterations=2)

thresh= cv2.dilate(thresh,None, iterations=2)

cnts= cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

cnts=imutils.grab_contours(cnts)

c =max(cnts, key=cv2.contourArea)

extLeft=tuple(c[c[:,:,0].argmin()][0])

extRight=tuple(c[c[:,:,0].argmax()][0])

extTop=tuple(c[c[:,:,1].argmin()][0])

extBot=tuple(c[c[:,:,1].argmax()][0])

img_cnt=cv2.drawContours(img.copy(),[c],-1,(0,255,255),4)

img_pnt=cv2.circle(img_cnt.copy(),extLeft,8,(0,0,255),-1)

img_pnt=cv2.circle(img_pnt,extRight,8,(0,255,0),-1)

img_pnt=cv2.circle(img_pnt,extTop,8,(255,0,0),-1)

img_pnt=cv2.circle(img_pnt,extBot,8,(255,255,0),-1)

ADD_PIXELS =0

new_img=img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS,extLeft[0]-

ADD_PIXELS:extRight[0]+ADD_PIXELS].copy()

X_train_crop=crop_imgs(set_name=X_train)

X_val_crop=crop_imgs(set_name=X_val)

X_test_crop=crop_imgs(set_name=X_test)

defsave_new_images(x_set,y_set,folder_name):

i=0

for(img,imclass)inzip(x_set,y_set):

ifimclass==0:

cv2.imwrite(folder_name+'/'+'NO/'+str(i)+'.jpg',img)

else:
cv2.imwrite(folder_name+'/'+'YES/'+str(i)+'.jpg',img)

i+=1

!mkdir TRAIN_CROP TEST_CROP VAL_CROP TRAIN_CROP/YES TRAIN_CROP/NO

TEST_CROP/YES TEST_CROP/NO VAL_CROP/YES VAL_CROP/NO

save_new_images(X_train_crop,y_train,folder_name='/content/TRAIN_CROP')

save_new_images(X_val_crop,y_val,folder_name='/content/VAL_CROP')

save_new_images(X_test_crop,y_test,folder_name='/content/TEST_CROP/')

defpreprocess_imgs(set_name,img_size):

set_new=[]

forimginset_name:

img= cv2.resize(

img,

dsize=img_size,

interpolation=cv2.INTER_CUBIC

)
set_new.append(preprocess_input(img))

©RCCIIT, DEPT. OF EE Page 31

returnnp.array(set_new)

X_train_prep=preprocess_imgs(set_name=X_train_crop,img_size=IMG_SIZE)

X_test_prep=preprocess_imgs(set_name=X_test_crop,img_size=IMG_SIZE)

X_val_prep=preprocess_imgs(set_name=X_val_crop,img_size=IMG_SIZE)

Model construction:

1. Load pre-trained models (with transfer learning)

fromzipfileimportZipFile

file_name="vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5.zip"

withZipFile(file_name,'r')aszipfile:

zipfile.extractall()

print('Done')

fromzipfileimportZipFile

file_name="resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5.zip"

withZipFile(file_name,'r')aszipfile:

zipfile.extractall()

print('Done')

fromzipfileimportZipFile

file_name="inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5.zip"

withZipFile(file_name,'r')aszipfile:

zipfile.extractall()

print('Done')

load base model

ResNet50_weight_path ='/content/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'

resnet50_x =ResNet50(

weights=ResNet50_weight_path,

include_top=False,

input_shape=IMG_SIZE +(3,)

)

NUM_CLASSES = 1

resnet50 = Sequential()

resnet50.add(resnet50_x)

resnet50.add(layers.Dropout(0.3))

resnet50.add(layers.Flatten())

resnet50.add(layers.Dropout(0.5))

resnet50.add(layers.Dense(NUM_CLASSES, activation='sigmoid'))

resnet50.layers[0].trainable = False

resnet50.compile(

loss='binary_crossentropy',

optimizer=RMSprop(lr=1e-4),

metrics=['accuracy']

)

resnet50.summary()

©RCCIIT, DEPT. OF EE Page 32

InceptionV3_weight_path ='/content/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5'

inceptionV3 =InceptionV3(

weights=InceptionV3_weight_path,

include_top=False,

input_shape=IMG_SIZE +(3,)

)

NUM_CLASSES = 1

inception_v3 = Sequential()

inception_v3.add(inceptionV3)

inception_v3.add(layers.Dropout(0.3))

inception_v3.add(layers.Flatten())

inception_v3.add(layers.Dropout(0.5))

inception_v3.add(layers.Dense(NUM_CLASSES, activation='sigmoid'))

inception_v3.layers[0].trainable = False

inception_v3.compile(

loss='binary_crossentropy',

optimizer=RMSprop(lr=1e-4),

metrics=['accuracy']

)

inception_v3.summary()

vgg16_weight_path ='/content/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5'

vgg= VGG16(

weights=vgg16_weight_path,

include_top=False,

input_shape=IMG_SIZE +(3,)

)

NUM_CLASSES =1

vgg16 =Sequential()

vgg16.add(vgg)

vgg16.add(layers.Dropout(0.3))

vgg16.add(layers.Flatten())

vgg16.add(layers.Dropout(0.5))

vgg16.add(layers.Dense(NUM_CLASSES, activation='sigmoid'))

vgg16.layers[0].trainable =False

vgg16.compile(

loss='binary_crossentropy',

optimizer=RMSprop(lr=1e-4),

metrics=['accuracy']

)
vgg16.summary()

2. Build model from scratch (without transfer learning)

defbuild_model(in_shape):

xinput=Input(in_shape)

 x=ZeroPadding2D((2,2))(xinput)

 x=Conv2D(32,(7,7),strides=(1,1))(x)

 x=BatchNormalization(axis=3)(x)

©RCCIIT, DEPT. OF EE Page 33

 x=Activation('relu')(x)

 x=MaxPooling2D((4,4))(x)

 x=MaxPooling2D((4,4))(x)

 x=Flatten()(x)

 x=Dense(1,activation='sigmoid')(x)

model=Model(inputs=xinput,outputs=x,name="Tumour_Detection_Model")

return model

model=build_model((240,240,3))

model.summary()

Machine Learning training:

TRAIN_DIR ='TRAIN_CROP/'

VAL_DIR ='VAL_CROP/'

train_datagen=ImageDataGenerator(

rotation_range=15,

width_shift_range=0.1,

height_shift_range=0.1,

shear_range=0.1,

brightness_range=[0.5,1.5],

horizontal_flip=True,

vertical_flip=True,

preprocessing_function=preprocess_input

)

test_datagen=ImageDataGenerator(

preprocessing_function=preprocess_input

)

train_generator=train_datagen.flow_from_directory(

 TRAIN_DIR,

color_mode='rgb',

target_size=IMG_SIZE,

batch_size=32,

class_mode='binary',

seed=RANDOM_SEED

)

validation_generator=test_datagen.flow_from_directory(

 VAL_DIR,

color_mode='rgb',

target_size=IMG_SIZE,

batch_size=16,

class_mode='binary',

seed=RANDOM_SEED

)

import time

start=time.time()

©RCCIIT, DEPT. OF EE Page 34

vgg16_history =

vgg16.fit_generator(train_generator,steps_per_epoch=30,epochs=30,validation_data=validation_generato

r,validation_steps=30)

end=time.time()

print(end - start)

import time

start=time.time()

inception_v3_history = inception_v3.fit_generator(

train_generator,

steps_per_epoch=30,

epochs=30,

validation_data=validation_generator,

validation_steps=30,

)
end=time.time()

print(end - start)

import time

start=time.time()

resnet50_history = resnet50.fit_generator(

train_generator,

steps_per_epoch=30,

epochs=30,

validation_data=validation_generator,

validation_steps=30,

)
end=time.time()

print(end - start)

model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])

model.fit(xtrain,ytrain,epochs=30,batch_size=32, verbose=1,validation_data=(xval,yval))

Evaluation of model performance:

print('Train: %.3f, Test: %.3f'%(train_acc,test_acc))

accuracy=accuracy_score(y_test, predictions)

print('Accuracy: %f'% accuracy))

precision=precision_score(y_test, predictions)

print('Precision: %f'% precision)

recall=recall_score(y_test, predictions)

print('Recall: %f'% recall)

f1 = f1_score(y_test, predictions)

print('F1 score: %f'% f1)

kappa=cohen_kappa_score(y_test, predictions)

print('Cohens kappa: %f'% kappa)

auc=roc_auc_score(y_test, predictions)

print('ROC AUC: %f'%auc)

matrix=confusion_matrix(y_test, predictions)

print(matrix)

©RCCIIT, DEPT. OF EE Page 35

history_1= vgg16_history

history_2=inception_v3_history

history_3=resnet50_history

defModelGraphTrainngSummary(history,N,model_name):

print("Generating plots...")

sys.stdout.flush()

matplotlib.use("Agg")

matplotlib.pyplot.style.use("ggplot")

matplotlib.pyplot.figure()

matplotlib.pyplot.plot(np.arange(0, N),history.history["loss"], label="train_loss")

matplotlib.pyplot.plot(np.arange(0, N),history.history["val_loss"], label="val_loss")

matplotlib.pyplot.title("Training Loss and Accuracy on Brain Tumor Classification")

matplotlib.pyplot.xlabel("Epoch #")

matplotlib.pyplot.ylabel("Loss/Accuracy of "+model_name)

matplotlib.pyplot.legend(loc="lower left")

matplotlib.pyplot.savefig("plot.png")

defModelGraphTrainngSummaryAcc(history,N,model_name):

print("Generating plots...")

sys.stdout.flush()

matplotlib.use("Agg")

matplotlib.pyplot.style.use("ggplot")

matplotlib.pyplot.figure()

matplotlib.pyplot.plot(np.arange(0, N),history.history["accuracy"], label="train_accuracy")

matplotlib.pyplot.plot(np.arange(0, N),history.history["val_accuracy"], label="val_accuracy")

matplotlib.pyplot.title("Training Loss and Accuracy on Brain Tumor Classification")

matplotlib.pyplot.xlabel("Epoch #")

matplotlib.pyplot.ylabel("Accuracy of "+model_name)

matplotlib.pyplot.legend(loc="lower left")

matplotlib.pyplot.savefig("plot.png")

forX_modelin[{'name':'VGG-16','history':history_1,'model':vgg16},

{'name':'Inception_v3','history':history_2,'model':inception_v3},

{'name':'Resnet','history':history_3,'model':resnet50}]:

ModelGraphTrainngSummary(X_model['history'],30,X_model['name'])

ModelGraphTrainngSummaryAcc(X_model['history'],30,X_model['name'])

predictions=X_model['model'].predict(X_val_prep)

predictions=[1if x>0.5else0for x in predictions]

accuracy=accuracy_score(y_val, predictions)

print('Val Accuracy = %.2f'% accuracy)

confusion_mtx=confusion_matrix(y_val, predictions)

 cm =plot_confusion_matrix(confusion_mtx, classes =list(labels.items()), normalize=False)

defplot_metrics(history):

train_loss=history['loss']

val_loss=history['val_loss']

train_acc=history['accuracy']

val_acc=history['val_accuracy']

plt.figure()

plt.plot(train_loss, label='Training Loss')

©RCCIIT, DEPT. OF EE Page 36

plt.plot(val_loss, label='Validation Loss')

plt.title('Loss')

plt.legend()

plt.show()

plt.figure()

plt.plot(train_acc, label='Training Accuracy')

plt.plot(val_acc, label='Validation Accuracy')

plt.title('Accuracy')

plt.legend()

plt.show()

plot_metrics(model.history.history)

plt.figure()

plt.plot(train_hist,color='r',linewidth=2,label='train')

plt.plot(val_hist,color='g',linewidth=2,label='test')

plt.xlabel('iterations')

plt.legend()

plt.show()

vgg16.save('2020-04-24_VGG_model.h5')

inception_v3.save('2020-04-24_inception_v3.h5')

resnet50.save('2020-04-24_resnet50.h5')

filepath="tumor-detection-{epoch:02d}-{val_acc:.2f}.model"

checkpoint=ModelCheckpoint(filepath, monitor='val_acc', verbose=1,save_best_only=True,

mode='max')

from mpl_toolkits.axes_grid1 importmake_axes_locatable

defimplot(mp,ax,cmap='gray'):

im=ax.imshow(mp.astype(np.float32),cmap=cmap)

divider=make_axes_locatable(ax)

cax=divider.append_axes("right", size="5%", pad=0.05)

cbar=plt.colorbar(im,cax=cax)

xb,yb=get_batch(X_p_test,Y_p_test,X_n_test,Y_n_test,n=Nbatch)

yh=sess.run(yhat,{x:xb})

ypred=np.argmax(yh,axis=3)

foriinrange(7):

plt.figure()

fig,(ax1, ax2, ax3)=plt.subplots(1,3,sharey=True,figsize=(10,3))

implot(xb[i,:,:,0],ax1)

implot(yb[i,:,:],ax2,cmap='Spectral')

implot(ypred[i,:,:],ax3,cmap='Spectral')

plt.grid('off')

plt.tight_layout()

plt.savefig('images_{}.pdf'.format(i),dpi=600)

plt.show()

©RCCIIT, DEPT. OF EE Page 37

EVALUATION OF THE PREDICTIVE MODEL

PERFORMANCE

Fig: Loss and Accuracy Vs Epoch plots of a CNN model without pre-trained Keras models like VGG16,

ResNet 50 and Inception v3

©RCCIIT, DEPT. OF EE Page 38

Fig: Loss and Accuracy Vs Epoch plots of VGG-16

©RCCIIT, DEPT. OF EE Page 39

Fig: Loss and Accuracy Vs Epoch plots of ResNet 50 model

©RCCIIT, DEPT. OF EE Page 40

Fig: Loss and Accuracy Vs Epoch plots of Inception v3

©RCCIIT, DEPT. OF EE Page 41

Fig: Confusion matrix plots (from top left) – VGG16, ResNet50 and Inception v3

21

©RCCIIT, DEPT. OF EE Page 42

Fig: Comparison of 3 pre-trained Keras models

Fig: Dice loss Vs Epoch after training with BRaTS MICCAI dataset

Metric VGG 16 ResNet 50 Inception V3

Train accuracy 0.940 0.820 0.640

Test accuracy 0.600 0.800 0.500

Overall accuracy 0.600000 0.800000 0.500000

Precision 0.555556 0.800000 0.500000

Recall 1.000000 0.800000 1.000000

F1 score 0.714286 0.800000 0.666667

 AUC 0.600000 0.800000 0.500000

©RCCIIT, DEPT. OF EE Page 43

Fig: Original (left), Ground Truth (middle) and our network model on the BRaTS 2015 dataset

(right)

©RCCIIT, DEPT. OF EE Page 44

CONCLUSION

Without pre-trained Keras model, the train accuracy is 97.5% and validation accuracy is

90.0%.The validation result had a best figure of 91.09% as accuracy.It is observed that without

using pre-trained Keras model, although the training accuracy is >90%, the overall accuracy is

low unlike where pre-trained model is used.

Also, when we trained our dataset without Transfer learning, the computation time was

40 min whereas when we used Transfer Learning, the computation time was 20min. Hence,

training and computation time with pre-trained Keras model was 50% lesser than without.

Chances over over-fitting the dataset is higher when training the model from scratch

rather than using pre-trained Keras.Keras also provides an easy interface for data augmentation.

Amongst the Keras models, it is seen that ResNet 50 has the best overall accuracy as well

as F1 score.ResNet is a powerful backbone model that is used very frequently in many computer

vision tasks.

Precision and Recall both cannot be improved as one comes at the cost of the other .So,

we use F1 score too.

Transfer learning can only be applied if low-level features from Task 1(image

recognition) can be helpful for Task 2(radiology diagnosis).

For a large dataset, Dice loss is preferred over Accuracy.

For small size of data, we should use simple models, pool data, clean up data, limit

experimentation, use regularisation/model averaging ,confidence intervals and single number

evaluation metric.

To avoid overfitting, we need to ensure we have plenty of testing and validation of data

i.e. dataset is not generalised. This is solved by Data Augmentation. If the training accuracy too

high, we can conclude that it the model might be over fitting the dataset. To avoid this, we can

monitor testing accuracy, use outliers and noise, train longer, compare variance (=train

performance-test performance).

©RCCIIT, DEPT. OF EE Page 45

FUTURE SCOPE

Build an app-based user interface in hospitals which allows doctors to easily determine

the impact of tumor and suggest treatment accordingly

Since performance and complexity of ConvNets depend on the input data representation

we can try to predict the location as well as stage of the tumor from Volume based 3D images.

By creating three dimensional (3D) anatomical models from individual patients, training,

planning and computer guidance during surgery is improved.

Using VolumeNet with LOPO (Leave-One-Patient-Out) scheme has proved to give a

high training as well as validation accuracy(>95%).In LOPO test scheme, in each iteration, one

patient is used for testing and remaining patients are used for training the ConvNets, this iterates

for each patient. Although LOPO test scheme is computationally expensive, using this we can

have more training data which is required for ConvNets training. LOPO testing is robust and

most applicable to our application, where we get test result for each individual patient. So, if

classifier misclassifies a patient then we can further investigate it separately.

Improve testing accuracy and computation time by using classifier boosting techniques like

using more number images with more data augmentation, fine-tuning hyper parameters, training

for a longer time i.e. using more epochs, adding more appropriate layers etc.. Classifier boosting

is done by building a model from the training data then creating a second model that attempts to

correct the errors from the first model for faster prognosis. Such techniques can be used to raise

the accuracy even higher and reach a level that will allow this tool to be a significant asset to any

medical facility dealing with brain tumors.

For more complex datasets, we can use U-Net architecture rather than CNN where the

max pooling layers are just replaced by upsampling ones.

Ultimately we would like to use very large and deep convolutional nets on video

sequences where the temporal structure provides very helpful information that is missing or far

less obvious in static images.

Unsupervised transfer learning may attract more and more attention in the future.

©RCCIIT, DEPT. OF EE Page 46

BIBLIOGRAPHY

[1]. S. Bauer et al., ―A survey of MRI-based medical image analysis for brain tumor studies,‖

Phys. Med. Biol., vol. 58, no. 13, pp.97–129, 2013.

[2]. B. Menze et al., ―The multimodal brain tumor image segmentation benchmark (BRATS),‖

IEEE Trans. Med. Imag., vol. 34, no.10, pp. 1993–2024, Oct. 2015

[3]. B. H. Menze et al., ―A generative model for brain tumor segmentation in multi-modal

images,‖ in Medical Image Computing and Comput.- Assisted Intervention-MICCAI 2010. New

York: Springer, 2010, pp. 151–159

[4]. S. Bauer, L.-P. Nolte, and M. Reyes, ―Fully automatic segmentation of brain tumor images

using support vector machine classification in combination with hierarchical conditional random

field regularization,‖ in Medical Image Computing and Comput.-Assisted Intervention-MICCAI

2011. New York: Springer, 2011, pp. 354–361.

[5]. C.-H. Lee et al., ―Segmenting brain tumors using pseudo-conditional random fields,‖ in

Medical Image Computing and Comput.-Assisted

[6]. Intervention-MICCAI 2008. New York: Springer, 2008, pp. 359–366

[7]. R. Meier et al., ―A hybrid model for multimodal brain tumor segmentation,‖ in Proc. NCI-

MICCAI BRATS, 2013, pp. 31–37.

[8]. Vinod Kumar, JainySachdeva, Indra Gupta ―Classification of brain tumors using PCA-

ANN‖ 2011 World Congress on Information and Communication Technologies

[9]. Sergio Pereira, Adriano Pinto, Victor Alves, and Carlos A. Silva ―Brain Tumor

Segmentation Using Convolutional Neural Networks in MRI Images‖IEEE TRANSACTIONS

ON MEDICAL IMAGING, VOL. 35, NO. 5, MAY 2016

[10]. RaselAhmmed, Md. Foisal Hossain ―Tumor Detection in Brain MRI Image Using

Template based K-means and Fuzzy C-means Clustering Algorithm‖ 2016 International

Conference on Computer Communication and Informatics (ICCCI -2016), Jan. 07 –09, 2016,

Coimbatore, INDIA

[11]. S.C. Turaga, J.F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman,W. Denk, and

H.S. Seung. Convolutional networks can learn to generate affinity graphs for image

segmentation. Neural Computation, 22(2):511–538, 2010

[12] A Reliable Method for Brain Tumor Detection Using Cnn Technique NeethuOuseph C1,

Asst. Prof. Mrs.Shruti K2 1(Digital electronics ECE, Malabar Institute of Technology, India)

2(Electronics and Communication Engineering, Malabar Institute of Technology, India)

©RCCIIT, DEPT. OF EE Page 47

[13] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al. "The

Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on

Medical Imaging 34(10), 1993-2024 (2015) DOI: 10.1109/TMI.2014.2377694

[14] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby, et al., "Advancing The

Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic

features", Nature Scientific Data, 4:170117 (2017) DOI: 10.1038/sdata.2017.117

[15] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al., "Identifying the Best

Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and

Overall Survival Prediction in the BRATS Challenge", arXiv preprint arXiv:1811.02629 (2018)

[16]A.Vidyarthi, N.Mittal, ―CLAP: Closely link associated pixel based extraction of brain tumor

in MR images‖, International Advance Computing Conference on Signal Processing and

Communication (IACC), pp. 202 -206

[17]International Journal of Computer Science and communication Vol. 2, No. 2, July-

December-2011,pp. 325-331

[18] k. Ramya and L. K. Joshila Grace ―Brain tumor detection based on watershed

transformation‖, International Conference on Communication and Signal Processing

(ICCSP),2016.

[19]Luxit Kapoor and Sanjeev Thakur ―A survey on brain tumor detection using Image

processing techniques‖,7s International Conference on Cloud Computing, Data Science &

Engineering-Confluence, 2017.

[20] MinuSamantaray ,MilleePanigrahi, K.C .Patra ,AvipsaS.Panda and Rina Mahakud ―An

adaptive filtering technique filtering technique for brain tumor analysis and detection‖,10th

International Conference on Intellligent and Control (ISCO),2016.

[21] S.U. Aswathy, G.Glan Deva Dhas and S.S. Kumar ―A Survey on detection of brain tumor

from MRI Brain images‖, 7th International Conference on Cloud Computing, Data Science &

Engineering –Confluence 2017.

[22] S. Banerjee, S. Mitra, and B. U. Shankar, ―Synergetic neuro-fuzzy feature selection and

classification of brain tumors,‖ in 2017 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), 2017, pp.1–6.

©RCCIIT, DEPT. OF EE Page 48

REFERENCES

[1] https://keras.io/applications/

[2] https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-

the-eli5-way-3bd2b1164a53

[3] https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

[4] https://simpleitk.org

[5]https://neurohive.io/en/popular-networks/resnet/

[6]https://scikit-learn.org/stable/modules/svm.html

[7]http://builtin.com/data-science/transfer-learning

[8]https://openreview.net/forum?id=BJIRs34Fvr

[9]https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640210

[10] https://arxiv.org/pdf/1409.1556.pdf

[11] https://www.cse.ust.hk/~qyang/Docs/2009/tkde_transfer_learning.pdf

[12] https://arxiv.org/pdf/1409.4842.pdf

[13] https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-

networks.pdf

[14] https://arxiv.org/pdf/1512.03385.pdf

https://keras.io/applications/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751
https://simpleitk.org/
https://neurohive.io/en/popular-networks/resnet/
https://scikit-learn.org/stable/modules/svm.html
http://builtin.com/data-science/transfer-learning
https://openreview.net/forum?id=BJIRs34Fvr
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640210
https://arxiv.org/pdf/1409.1556.pdf
https://www.cse.ust.hk/~qyang/Docs/2009/tkde_transfer_learning.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/pdf/1512.03385.pdf

