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ABSTRACT 

Automated defect detection in medical imaging has become the emergent field in several 

medical diagnostic applications. Automated detection of tumor in MRI is very crucial as it 

provides information about abnormal tissues which is necessary for planning treatment. The 

conventional method for defect detection in magnetic resonance brain images is human 

inspection. This method is impractical due to large amount of data. Hence, trusted and automatic 

classification schemes are essential to prevent the death rate of human. So, automated tumor 

detection methods are developed as it would save radiologist time and obtain a tested accuracy. 

The MRI brain tumor detection is complicated task due to complexity and variance of tumors. In 

this project, we propose the machine learning algorithms to overcome the drawbacks of 

traditional classifiers where tumor is detected in brain MRI using machine learning algorithms. 

Machine learning and image classifier can be used to efficiently detect cancer cells in brain 

through MRI. 
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INTRODUCTION 

Brain tumor is one of the most rigorous diseases in the medical science. An effective and 

efficient analysis is always a key concern for the radiologist in the premature phase of tumor 

growth. Histological grading, based on a stereotactic biopsy test, is the gold standard and the 

convention for detecting the grade of a brain tumor. The biopsy procedure requires the 

neurosurgeon to drill a small hole into the skull from which the tissue is collected. There are 

many risk factors involving the biopsy test, including bleeding from the tumor and brain causing 

infection, seizures, severe migraine, stroke, coma and even death. But the main concern with the 

stereotactic biopsy is that it is not 100% accurate which may result in a serious diagnostic error 

followed by a wrong clinical management of the disease.  

Tumor biopsy being challenging for brain tumor patients, non-invasive imaging 

techniques like Magnetic Resonance Imaging (MRI) have been extensively employed in 

diagnosing brain tumors. Therefore, development of systems for the detection and prediction of 

the grade of tumors based on MRI data has become necessary. But at first sight of the imaging 

modality like in Magnetic Resonance Imaging (MRI), the proper visualisation of the tumor cells 

and its differentiation with its nearby soft tissues is somewhat difficult task which may be due to 

the presence of low illumination in imaging modalities or its large presence of data or several 

complexity and variance of tumors-like unstructured shape, viable size and unpredictable 

locations of the tumor.  

Automated defect detection in medical imaging using machine learning has become the 

emergent field in several medical diagnostic applications. Its application in the detection of brain 

tumor in MRI is very crucial as it provides information about abnormal tissues which is 

necessary for planning treatment.Studies in the recent literature have also reported that automatic 

computerized detection and diagnosis of the disease, based on medical image analysis, could be 

a good alternative as it would save radiologist time and also obtain a tested accuracy. 

Furthermore, if computer algorithms can provide robust and quantitative measurements of tumor 

depiction, these automated measurements will greatly aid in the clinical management of brain 

tumors by freeing physicians from the burden of the manual depiction of tumors. 



©RCCIIT, DEPT. OF EE  Page 7 
 
 

 

 

 

The machine learning based approaches like Deep ConvNets  in radiology and other 

medical science fields plays an important role to diagnose the disease in much simpler way as 

never done before and hence providing a feasible alternative to surgical biopsy for brain tumors . 

In this project, we attempted at detecting and classifying the brain tumor and comparing the 

results of binary and multi class classification of brain tumor with and without Transfer Learning 

(use of pre-trained Keras models like VGG16, ResNet50 and Inception v3) using Convolutional 

Neural Network (CNN) architecture. 
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LITERARY REVIEW 

 

Krizhevsky et al. 2012 achieved state-of-the-art results in image classification based on transfer 

learning solutions upon training a large, deep convolutional neural network to classify the 1.2 

million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different 

classes. On the test data, he achieved top-1 and top-5 error rates of 37.5% and 17.0% which was 

considerably better than the previous state-of-the-art. He also entered a variant of this model in 

the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared 

to 26.2% achieved by the second-best entry. The neural network, which had 60 million 

parameters and 650,000 neurons, consisted of five convolutional layers, some of which were 

followed by max-pooling layers, and three fully-connected layers with a final 1000-way 

Softmax. To make training faster, he used non-saturating neurons and a very efficient GPU 

implementation of the convolution operation. To reduce overfitting in the fully-connected layers 

he employed a recently-developed regularization method called ―dropout‖ that proved to be very 

effective. 

Simonyan& Zisserman 2014 they investigated the effect of the convolutional network depth on 

itsaccuracy in the large-scale image recognition setting. These findings were the basis of their 

ImageNet Challenge 2014 submission, where their team secured the first and the second places 

in the localisation and classification tracks respectively. Their main contribution was a thorough 

evaluation of networks of increasing depth using architecture with very small (3×3) convolution 

filters, which shows that a significant improvement on the prior-art configurations can be 

achieved by pushing the depth to 16–19 weight layers after training smaller versions of VGG 

with less weight layers. 

Pan & Yang 2010‘ssurvey focused on categorizing and reviewing the current progress on 

transfer learning for classification, regression and clustering problems. In this survey, they 

discussed the relationship between transfer learning and other related machine learning 

techniques such as domain adaptation, multitask learning and sample selection bias, as well as 

co-variate shift. They also explored some potential future issues in transfer learning research.In 

this survey article, theyreviewed several current trends of transfer learning.  
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Szegedyet al.2015 proposed a deep convolutional neural network architecture codenamed 

Inception, which was responsible for setting the new state of the art for classificationand 

detection in the ImageNet Large-Scale Visual Recognition Challenge 2014(ILSVRC14). The 

main hallmark of this architecture is the improved utilizationof the computing resources inside 

the network. This was achieved by a carefullycrafted design that allows for increasing the depth 

and width of the network whilekeeping the computational budget constant. His results seem to 

yield solid evidence that approximating the expected optimal sparse structureby readily available 

dense building blocks is a viable method for improving neural networks forcomputer vision.  

He et al., 2015b introduced the ResNet, which utilizes ―skip connections‖ and batch 

normalization.Hepresented a residual learning framework to ease the trainingof networks that are 

substantially deeper than those used previously. He explicitly reformulated the layers as learning 

residual functions with reference to the layer inputs, instead of learning unreferenced functions. 

He provided comprehensive empirical evidence showing that these residualnetworks are easier to 

optimize, and can gain accuracy fromconsiderably increased depth. On the ImageNet dataset 

heevaluated residual nets with a depth of up to 152 layers—8×deeper than VGG nets but still 

having lower complexity. An ensemble of these residual nets achieves 3.57% erroron the 

ImageNet test set. This result won the 1st place on theILSVRC 2015 classification task. He also 

presented analysison CIFAR-10 with 100 and 1000 layers. 

Ref. [22] reports the accuracy achieved by seven standard classifiers, viz. i)Adaptive Neuro-

Fuzzy Classifier (ANFC), ii) Naive Bayes(NB), iii) Logistic Regression (LR), iv) Multilayer 

Perceptron(MLP), v) Support Vector Machine (SVM), vi) Classification and Regression Tree 

(CART), and vii) k-nearest neighbours (k-NN). The accuracy reported in Ref. [17] is on the 

BRaTS 2015 dataset (a subset of BRaTS 2017 dataset) which consists of 200 HGG and 54 LGG 

cases. 56 three-dimensional quantitative MRI features extracted manually from each patient MRI 

and used for the classification. 
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WORKING THEORY OF OUR PROJECT: 

Artificial Intelligence: 

 Artificial intelligence (AI) is the simulation of human intelligence processes by 

machines, especially computer systems enabling it to even mimic human behaviour. Its 

applications lie in fields of Computer Vision, Natural Language Processing, Robotics, Speech 

Recognition, etc. Advantages of using AI are improved customer experience, accelerate speed to 

market, develop sophisticated products, enable cost optimisation, enhance employee productivity 

and improve operational efficiency. Machine Learning (ML) is a subset of AI which is 

programmed to think on its own, perform social interaction, learn new information from the 

provided data and adapt as well as improve with experience.  Although training time via Deep 

Learning (DL) methods is more than Machine Learning methods, it is compensated by higher 

accuracy in the former case. Also, DL being automatic, large domain knowledge is not required 

for obtaining desired results unlike in ML. 

 

Fig: A diagram showing the sub-classes of Artificial Intelligence 

Brain tumor: 

In medical science, an anomalous and uncontrollable cell growth inside the brain is 

recognised as tumor. Human brain is the most receptive part of the body. It controls muscle 

movements and interpretation of sensory information like sight, sound, touch, taste, pain, etc.  

The human brain consists of Grey Matter (GM), White Matter (WM) and Cerebrospinal 

Fluid (CSF) and on the basis of factors like quantification of tissues, location of abnormalities, 

malfunctions & pathologies and diagnostic radiology, a presence of tumor is identified. A tumor 

in the brain can affect such sensory information and muscle movements or even results in more 

dangerous situation which includes death. Depending upon the place of commencing, tumor can 

be categorised into primary tumors and secondary tumors. If the tumor is originated inside the 

skull, then the tumor is known as primary brain tumor otherwise if the tumor‘s initiation place is 
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somewhere else in the body and moved towards the brain, then such tumors are called secondary 

tumors.  

Brain tumor can be of the following types-glioblastoma, sarcoma, metastatic 

bronchogenic carcinoma on the basis of axial plane. While some tumours such as meningioma 

can be easily segmented, others like gliomas and glioblastomas are much more difficult to 

localise. World Health Organisation (WHO) categorised gliomas into - HGG/high grade 

glioma/glioblastoma/IV stage /malignant & LGG/low grade glioma/II and III stage /benign. 

Although most of the LGG tumors have slower growth rate compared to HGG and are 

responsive to treatment, there is a subgroup of LGG tumors which if not diagnosed earlier and 

left untreated could lead to GBM. In both cases a correct treatment planning (including surgery, 

radiotherapy, and chemotherapy separately or in combination) becomes necessary, considering 

that an early and proper detection of the tumor grade can lead to a good prognosis. Survival time 

for a GBM (Glioblastoma Multiform) or HGG patient is very low i.e. in the range of 12 to 15 

months.  

Magnetic Resonance Imaging (MRI) has become the standard non-invasive technique for 

brain tumor diagnosis over the last few decades, due to its improved soft tissue contrast that does 

not use harmful radiations unlike other methods like CT(Computed Tomography), X-ray, PET 

(Position Emission Tomography) scans etc. The MRI image is basically a matrix of pixels 

having characteristic features.  

Since glioblastomas are infiltrative tumours, their borders are often fuzzy and hard to 

distinguish from healthy tissues. As a solution, more than one MRI modality is often employed 

e.g. T1 (spin-lattice relaxation), T1-contrasted (T1C), T2 (spin-spin relaxation), proton density 

(PD) contrast imaging, diffusion MRI (dMRI), and fluid attenuation inversion recovery (FLAIR) 

pulse sequences. T1-weighted images with intravenous contrast highlight the most vascular 

regions of the tumor (T 1C gives much more accuracy than T1.), called ‗Enhancing tumor‘ (ET), 

along with the ‗tumor core' (TC) that does not involve peritumoral edema. T2-weighted  (T2W)  

and  T2W-Fluid  Attenuation  Inversion  Recovery  (FLAIR)  images  are  used  to  evaluate  the 

tumor and peritumoral edema together defined as the ‗whole tumor‘ (WT). Gliomas and 

glioblastomas are difficult to distinguish in T1, T1c, T2 and PD. They are better identified in 

FLAIR modalities.  
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We have attempted to separate the brain tumor into following types-necrosis (1), edema 

(2), non- enhancing (malignant) (3) and enhancing (benign) (4) tumor. MRI images can be of 

three types on the basis of position from which they are taken which are Sagittal (side), Coronal 

(back) and Axial (top). We have used sagittal images in our project. 

Process of brain tumor segmentation can be manual selection of ROI, Semi-automatic 

and fully-automatic. Popular machine learning algorithms for classification of brain tumor are 

Artificial Neural Network, Convolutional Neural Network, k-Nearest Neighbour (kNN), 

Decision Tree, Support Vector Machine (SVM), Naïve Bayes and Random Field (RF). Here, we 

are using Convolutional Neural Network (CNN) for the detection and classification of the brain 

tumor.  

Basic Operation of Neural Networks: 

Neural Networks (NN) form the base of deep learning, a subfield of machine learning 

where the algorithms are inspired by the structure of the human brain. NN take in data, train 

themselves to recognize the patterns in this data and then predict the outputs for a new set of 

similar data. NN are made up of layers of neurons. These neurons are the core processing units 

of the network. First we have the input layer which receives the input; the output layer predicts 

our final output. In between, exist the hidden layers which perform most of the computations 

required by our network. 

Our brain tumor images are composed of 128 by 128 pixels which make up for 16,384 pixels. 

Each pixel is fed as input to each neuron of the first layer. Neurons of one layer are connected to 

neurons of the next layer through channels .Each of these channels is assigned a numerical value 

known as ‗weight‘. The inputs are multiplied to the corresponding weight and their sum is sent 

as input to the neurons in the hidden layer. Each of these neurons is associated with a numerical 

value called the ‗bias‘ which is then added to the input sum. This value is then passed through a 

threshold function called the ‗activation function‘. The result of the activation function 

determines if the particular neuron will get activated or not. An activated neuron transmits data 

to the neurons of the next layer over the channels. In this manner the data is propagated through 

the network this is called ‗forward propagation‘. In the output layer the neuron with the highest 

value fires and determines the output. The values are basically a probable. The predicted output 

is compared against the actual output to realize the ‗error‘ in prediction. The magnitude of the 
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error gives an indication of the direction and magnitude of change to reduce the error. This 

information is then transferred backward through our network. This is known as ‗back 

propagation‘. Now based on this information the weights are adjusted. This cycle of forward 

propagation and back propagation is iteratively performed with multiple inputs. This process 

continues until our weights are assigned such that the network can predict the type of tumor 

correctly in most of the cases. This brings our training process to an end. NN may take hours or 

even months to train but time is a reasonable trade-off when compared to its scope Several 

experiments show that after pre-processing MRI images, neural network classification algorithm 

was the best more specifically CNN(Convolutional Neural Network) as compared to Support 

Vector Machine(SVM),Random Forest Field. 

 

 

Fig: A multi-layer perceptron model of neural network 
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Transfer Learning: 

A major assumption in many machine learning and data mining algorithms is that the 

training and future data must be in the same feature space and have the same distribution. 

However, in many real-world applications, this assumption may not hold. For example, we 

sometimes have a classification task in one domain of interest, but we only have sufficient 

training data in another domain of interest, where the latter data may be in a different feature 

space or follow a different data distribution. In such cases, knowledge transfer, if done 

successfully, would greatly improve the performance of learning by avoiding much expensive 

data labelling efforts. In recent years, transfer learning has emerged as a new learning framework 

to address this problem.  

Transfer learning allows neural networks using significantly less data .With transfer 

learning, we are in effect transferring the ‗knowledge‘ that a model has learned from a previous 

task, to our current one. The idea is that the two tasks are not totally disjoint, as such we can 

leverage whatever network parameters that model has learned through its extensive training, 

without having to do that training ourselves. Transfer learning has been consistently proven to 

boost model accuracy and reduce required training time, less data, less time, more accuracy. 

Transfer learning is classified to three different settings: inductive transfer learning, transductive 

transfer learning and unsupervised transfer learning. Most previous works focused on the 

settings. Furthermore, each of the approaches to transfer learning can be classified into four 

contexts based on ―what to transfer‖ in learning. They include the instance-transfer approach, the 

feature-representation-transfer approach, the parameter transfer approach and the relational-

knowledge-transfer approach, respectively. 

The smaller networks converged & were then used as initializations for the larger, deeper 

networks- This process is called pre-training. While making logical sense, pre-training is a very 

time consuming, tedious task, requiring an entire network to be trained before it can serve as an 

initialization for a deeper network. 

Activation Function: 

Sigmoid function ranges from 0 to 1 and is used to predict probability as an output in 

case of binary classification while Softmax function is used for multi-class classification. tanh 

function ranges from  -1 to 1 and is considered better than sigmoid  in binary classification using 

feed forward algorithm. ReLU (Rectified Linear Unit) ranges from 0 to infinity and Leaky ReLU 



©RCCIIT, DEPT. OF EE  Page 15 
 
 

 

 

 

(better version of ReLU) ranges- from -infinity to +infinity. ReLU stands for Rectified Linear 

Unit for a non-linear operation. The output is ƒ(x) = max(0,x).ReLU‘s purpose is to introduce 

non-linearity in our ConvNet. Since, the real world data would want our ConvNet to learn would 

be non-negative linear values. There are other nonlinear functions such as tanh or sigmoid that 

can also be used instead of ReLU. Most of the data scientists use ReLU since performance wise 

ReLU is better than the other two. 

Stride is the number of pixels that would move over the input matrix one at a time. 

Sometimes filter does not fit perfectly fit the input image. We have two options: either 

pad the picture with zeros (zero-padding) so that it fits or drop the part of the image where the 

filter did not fit. This is called valid padding which keeps only valid part of the image. 

Convolutional Neural Network: 

Classifier models can be basically divided into two categories respectively which are 

generative models based on hand- crafted features and discriminative models based on 

traditional learning such as support vector machine (SVM), Random Forest (RF) and 

Convolutional Neural Network (CNN). One difficulty with methods based on hand-crafted 

features is that they often require the computation of a large number of features in order to be 

accurate when used with many traditional machine learning techniques. This can make them 

slow to compute and expensive memory-wise. More efficient techniques employ lower numbers 

of features, using dimensionality reduction like PCA (Principle Component Analysis) or feature 

selection methods, but the reduction in the number of features is often at the cost of reduced 

accuracy.  Brain tumour segmentation employ discriminative models because unlike generative 

modelling approaches, these approaches exploit little prior knowledge on the brain‘s anatomy 

and instead rely mostly on the extraction of [a large number of] low level image features, directly 

modelling the relationship between these features and the label of a given voxel.  

In our project, we have used the Convolutional Neural Network architecture for Brain 

tumor Detection and Classification. 

Convolutional neural network processes closely knitted data used for image 

classification, image processing, face detection etc. It is a specialised 3D structure with 

specialised NN analysing RGB layers of an image .Unlike others, it analyses one image at a time 

,identifies and extracts important features and uses them to classify the image .Convolutional 
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Neural Networks (ConvNets) automatically learns mid-level and high-level representations or 

abstractions from the input training data. The main building block used to construct a CNN 

architecture is the convolutional layer. It also consists of several other layers, some of which are 

described as bellow: 

 Input Layer-It takes in the raw pixel value of input image 

 Convolutional Layer- It is the first layer to extract features from an input image. 

Convolution preserves the relationship between pixels by learning image features using 

small squares of input data. It is a mathematical operation that takes two inputs such as 

image matrix and a filter or kernel to generate a feature map Convolution of an image 

with different filters can perform operations such as edge detection, blur and sharpen by 

applying filters. 

 Activation Layer-It produces a single output based on the weighted sum of inputs 

 Pooling Layer-Pooling layers section would reduce the number of parameters when the 

images are too large. Spatial pooling (also called subsampling or down sampling) reduces 

the dimensionality of each map but retains important information. Spatial pooling can be 

of different types: 

o Max Pooling – taking the largest element in the feature map 

o Average Pooling -  taking the average of elements in the feature map 

o Sum Pooling – taking the sum of all elements in the feature map 

 Fully Connected Layer-The layer we call as FC layer, we flattened our matrix into vector 

and feed it into a fully connected layer like a neural network. the feature map matrix will 

be converted as column vector (x1, x2, x3, …). With the fully connected layers, we 

combined these features together to create a model. Forclassifying  input image into 

various classes based on training set. 

 Dropout Layer-It prevents nodes in a network from co-adapting to each other. 
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Advantages- 

1. It is considered as the best ml technique for image classification due to high accuracy.  

2. Image pre-processing required is much less compared to other algorithms. 

3. It is used over feed forward neural networks as it can be trained better in case of complex 

images to have higher accuracies.  

4. It reduces images to  a form which is easier to process without losing features which are 

critical for a good prediction by applying relevant filters and reusability of weights 

5. It can automatically learn to perform any task just by going through the training data i.e. 

there no need for prior knowledge 

6. There is no need for specialised hand-crafted image features like that in case of SVM, 

Random Forest etc. 

Disadvantages- 

1. It requires a large training data. 

2. It requires appropriate model. 

3. It is time consuming. 

4. It is a tedious and exhaustive procedure. 

5. While convolutional networks have already existed for a long time, their success was 

limited due to the size of the considered network. 

Solution-Transfer Learning for inadequate data which will replace the last fully connected layer 

with pre-trained ConvNet with new fully connected layer. 

 

Fig: A diagram of a model trained from scratch using CNN architecture. 
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Evaluation Metrics: 

 True Positive (TP) is the HGG class predicted in the presence of the LGG class of the 

glioma.  True Negative (TN) is the LGG class predicted in the absence of the HGG class 

of glioma.  False Positive (FP) is prediction of HGG class in the absence of LGG class.  

False Negative (FN) is prediction of LGG class in the absence of HGG class.  

 Accuracy is the most intuitive performance measure. Accuracy is the amount of correctly 

prediction made by the total number of predictions made. Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

 Precision is defined as the number of true positives divided by the number of true 

positives plus the number of false positives.Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 Recall is also known as sensitivity. It is the fraction of the total amount of relative 

relevant instances that were actually retrieved.Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 F 1 Score is the weighted average or the harmonic mean of Precision and Recall taking 

both metrics into account in the following equation: F1 Score = 2 x 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑟𝑒𝑐𝑎𝑙𝑙
 

.When we have an unbalanced dataset F 1 Score favoured over accuracy because it takes 

both false positives and false negatives into account. F-measures are used to balance the 

ratio of false negatives using a weighting parameter (beta) it is given as F = 𝑃 ∗ 𝑅
(1+𝛽)2 

(𝑃+𝑅)𝛽2 

 Other performance metrics used are:  sensitivity, specificity and error rate. Sensitivity 

represents the probability of predicting actual HGG class.  Specificity value defines 

prediction of LGG class. They allow us to determine potential of over- or under-

segmentations of the tumor sub-regions. The error rate (ERR) is the amount of predicted 

class that have been incorrectly classified by a decision model. The overall classification 

is also provided by the Area under the Curve (AUC) that represents better classification if 

the area under the curve is more.  All of these performances metric is evaluated for 

FLAIR sequences. 

 The DSC(dice similarity co-efficient) measures the overlap between the manual 

delineated brain tumour regions and the segmentation results of our fully automatic 

method that is. Mathematically, dice score/DSC is the number of false positives divided 

by the number of positives added with the number of false positives. DSC = 
2𝑇𝑃

𝐹𝑃+𝑇𝑃+𝐹𝑁
  

and Dice loss = 
2 𝑋1⊓𝑌1 

 𝑋1 + 𝑌1 
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IMPLEMENTATION METHODOLOGY: 

Software Requirements: 

Python 3 - We have used Python which is a statistical mathematical programming 

language like R instead of MATLAB due to the following reasons: 

 1. Python code is more compact and readable than MATLAB 

2. The python data structure is superior to MATLAB 

3. It is an open source and also provides more graphic packages and data sets  

Keras (with TensorFlow backend 2.3.0 version) - Keras is a neural network API consisting of 

TensorFlow, CNTk, Theano etc. 

Python packages like Numpy, Matplotlib, Pandas for mathematical computation and 

plotting graphs, SimpleITK for reading the images which were in .mha format and Mahotas for 

feature extraction of GLCM 

Kaggle was used to obtain the online dataset. 

GitHub and Stackoverflow was used for reference in case of programming syntax errors. 

OpenCV (Open Source Computer Vision) is a library of programming functions aimed at 

real time computer vision i.e. used for image processing and any operations relating to image 

like reading and writing images, modifying image quality, removing noise by using Gaussian 

Blur, performing binary thresholding on images, converting the original image consisting of 

pixel values into an array, changing the image from RGB to grayscale etc. It is free to use, 

simple to learn and supports C++, Java, C, Python. Its popular application lies in CamScanner or 

Instagram, GitHub or a web-based control repository.  

Google Colaboratory (open-source Jupyter Notebook interface with high GPU facility) - 

Google Colab /Colaboratory is a free Jupyter notebook environment that requires no setup and 

runs entirely on cloud. With Colab, one can write and execute code, save and share analyses, 

access powerful computing resources, all for free from browser.[Jupyter Notebook is a powerful 

way to iterate and write on your Python code for data analysis. Rather than writing and rewriting 

an entire code, one can write lines of code and run them at a time. It is built off of iPython which 
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is an interactive way of running Python code. It allows Jupyter notebook to support multiple 

languages as well as storing the code and writing own markdown.] 

Hardware Requirements: 

Processor: Intel® Core™ i3-2350M CPU @ 2.30GHz 

Installed memory (RAM):4.00GB 

System Type: 64-bit Operating System 

Image Acquisition:  

Kaggle dataset: 

Images can be in the form of .csv (comma separated values), .dat (data) files in grayscale, 

RGB, or HSV or simply in .zip file as was in the case of our online Kaggle dataset. It contained 

98 healthy MRI images and 155 tumor infected MRI images.  

BRaTS MICCAI dataset: 

The Multimodal Brain Tumor Segmentation (BRaTS) MICCAI has always been focusing 

on the evaluation of state-of-the-art methods for the segmentation of brain tumors in magnetic 

resonance imaging (MRI) scans. Ample multi-institutional routine clinically-acquired 

multimodal MRI scans of glioblastoma (GBM) and lower grade glioma (LGG), with 

pathologically confirmed diagnosis and available OS, was provided as the training, validation 

and testing data for BRaTS 2015 challenge. All BRaTS multimodal scans are available as NIfTI 

files (.nii.gz) and these multimodal scans describe a) native (T1) and b) post-contrast T1-

weighted (T1c), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion Recovery (FLAIR) 

volumes, and were acquired with different clinical protocols and various scanners from multiple 

institutions. They described a mixture of pre- and post-operative scans and their ground truth 

labels have been annotated by the fusion of segmentation results from algorithms. All the 

imaging datasets have been segmented manually, by one to four raters, following the same 

annotation protocol, and their annotations were approved by experienced neuro-radiologists. 

Annotations comprise the whole tumor, the tumor core (including cystic areas), and the C-

enhancing tumor core.  

The dataset contains 2 folders for the purpose of training and testing. The 'train' folder 

contains 2 sub-folders of HGG and LGG cases-220 patients of HGG and 27 patients of 
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LGG. The ‗test‘ folder contains brain images of 110 Patients with HGG and LGG cases 

combined. There are 5 different MRI image modalities for each patient which are T1, T2, 

T1C, FLAIR, and OT (Ground truth of tumor Segmentation). All these image files are 

stored in .mha format and are of the size of 240x240, resolution of (1 mm^3) and skull-

stripped. In the ground truth images, each voxel is labelled with zeros and non-zeros, 

corresponding to the normal pixel and parts of tumor cells, respectively. 

 

 

 

 

 

 

 

Fig: 1.Online Kaggle dataset(above two) 2. BRaTS MICCAI dataset (below) 

Data Augmentation: 

Data augmentation consists of Grey Scaling(RGB/BW to ranges of 

grey),Reflection(vertical/horizontal flip),Gaussian Blur(reduces image noise),Histogram 

equalisation(increases global contrast),Rotation(may not preserve image 

size),Translation(moving the image along x or y axis), linear transformation such as random 

rotation (0-10 degrees), horizontal and vertical shifts, and horizontal and vertical flips. Data 
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augmentation is done to teach the network desired invariance and robustness properties, when 

only few training samples are available. 

Image Pre-Processing: 

Our pre-processing includes rescaling, noise removal to enhance the image, applying 

Binary Thresholding and morphological operations like erosion and dilation, contour forming 

(edge based methodology). In the first step of pre-processing, the memory space of the image is 

reduced by scaling the gray-level of the pixels in the range 0-255. We used Gaussian blur filter 

for noise removal as it is known to give better results than Median filter since the outline of brain 

is not segmented as tumor here.  

Segmentation: 

Brain tumor segmentation involves the process of separating the tumor tissues (Region of 

Interest – ROI) from normal brain tissues and solid brain tumor with the help of MRI images or 

other imaging modalities. Its mechanism is based on identifying similar type of subjects inside 

an image and forms a group of such by either finding the similarity measure between the objects 

and group the objects having most similarity or finding the dissimilarity measure among the 

objects and separate the most dissimilar objects in the space. Segmentation algorithms can be of 

two type which are bi-clusters (2 sub-parts) or multi-clustered (more than 2 sub-parts) 

algorithms. Segmentation can be done by using-Edge Detection, Region Growing, Watershed, 

Clustering via FCM, Spatial Clustering, Split and Merge Segmentation and Neural Network via 

MLP(ANN+DWT).   

In order to identify the tumor region from the brain image, Binary Thresholding can be 

used (via Region Growing method), which converts a gray scale image to binary image based on 

the selected threshold values. The problems associated with such approach are that binary image 

results in loss of texture and the threshold value comes out be different for different images. 

Hence, we are looking for a more advanced segmentation algorithm, the watershed algorithm by 

using Otsu Binarisation. 

Feature Extraction:  

Feature Extraction is the mathematical statistical procedure that extracts the quantitative 

parameter of resolution changes/abnormalities that are not visible to the naked eye. Examples of 
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such features are  Entropy, RMS, Smoothness, Skewness, Symmetry, Kurtosis, Mean, Texture, 

Variance, Centroid, Central Tendency,  IDM (Inverse Difference  Moment 

),Correlation,Energy,Homogeneity,Dissimilarity,Contrast,Shade,Prominence,Eccentricity, 

Perimeter, Area and many more.  

Feature Extraction is identifying abnormalities. We need to extract some features from 

images as we need to do classification of the images using a classifier which needs these features 

to get trained on. We chose to extract GLCM (texture-based features). Gray Level Co-occurrence 

Matrix (GLCM) features are based on probability density function and frequency of occurrence 

of similar pixels. GLCM is a statistical method of examining texture that considers the spatial 

relationship of pixels. 

Machine Learning Training and Testing:  

Models for image classification with weights on ImageNet are 

Xception,VGG16,VGG19,ResnNet,ResNet2, ResNet 50, Inception v2, Inception v3, MobileNet, 

MobileNet v2, ,DenseNet, AlexNet, GoogleNet, NasNet etc. For the implementation of Transfer 

Learning in our project, we have chosen VGG16, ResNet50 and Inception v3 as out samples. 

 After training the model, we need to validate and fine-tune the parameters and finally test 

the model on unknown samples where the data undergoes feature extraction on the basis of 

which the model can predict the class by matching corresponding labels. To achieve this, we can 

either split our dataset in the ratio of -60/20/20 or 70/20/10. We have used the former one. 

For a given training dataset, back-propagation learning may proceed in one of the 

following two basic ways: 

o Pattern/Sequential/Incremental mode where the whole sequence of forward and backward 

computation is performed resulting in weight adjustment for each pattern. It again starts 

from the first pattern till errors are minimised, within acceptable levels. It is done online, 

requires less local storage, faster method and is less likely to be trapped in local minima. 

o Batch mode where the weight upgradation is done after all the N training sets or ‗epochs‘ 

are presented. After presentation of the full set, weights are upgraded and then again the 

whole batch/set is presented iteratively till the minimum acceptable error is arrived at by 

comparing the target and actual outputs. Training stops when a given number of epochs 

elapse or when the error reaches an acceptable level or when the error stops improving. 
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We have used this mode during our Machine Learning training by taking the value of N 

as 30. 

In supervised network, the network learns by comparing the network output with the correct 

answer. The network receives feedback about the errors by matching the corresponding labels  

and weights in different layers and adjusts its weights to minimise the error. It is also known as 

learning through teacher or ‗Reinforced Learning‘.  

In unsupervised network, there is no teacher i.e. labels are not provided along with the data to 

the network. Thus, the network does not get any feedback about the errors. The network itself 

discovers the interesting categories or features in the input data. In many situations, the learning 

goal is not known in terms of correct answers. The only available information is in the 

correlation of input data or signals. The unsupervised networks are expected to recognise the 

input patterns, classify these on the basis of correlations and produce output signals 

corresponding to input categories. It is a type of dynamic programming that trains algorithm 

using a system of reward and punishment. Agent learns without human interaction and examples 

and only by interacting with the environment. For our purpose, we have used supervised network 

or Reinforced Learning for training our model. 

 

 

Fig: A diagram showing Unsupervised (left) and Supervised Learning Network (right)  



©RCCIIT, DEPT. OF EE  Page 25 
 
 

 

 

 

FLOWCHART FOR DESIGN AND DEVELOPMENT OF 

PROPOSED PROJECT 

 

 

 

 

 

Analysis and Conclusion

Validation on unknown test samples

Tumor detection and classification

Machine Learning training

Model construction

Feature extraction

Segmentation via binary thresholding 

Image pre-processing

Data Collection
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PYTHON PROGRAM FOR THE PROPOSED PROJECT 

Import necessary Python packages: 
 

importnumpyas np 

importmatplotlib.pyplotasplt 

frommatplotlibimportpyplot 

fromnumpyimportexpand_dims 

import pandas aspd 

importtensorflowastf 

fromtqdmimporttqdm 

import cv2 

importimutils 

importshutil 

importitertools 

importseabornassns 

importumap 

from PIL import Image 

fromscipyimportmisc 

fromosimportlistdir 

fromos.pathimportisfile, join 

fromscipyimportmisc 

from random import shuffle 

from collections import Counter 

fromsklearn.decompositionimport PCA 

fromsklearn.manifoldimport TSNE 

fromitertoolsimport chain 

importos 

import sys 

import random 

import warnings 

from skimage.io import imread,imshow,imread_collection,concatenate_images 

fromskimage.transformimport resize 

fromskimage.morphologyimport label 

fromsklearn.preprocessingimportLabelBinarizer 

fromsklearn.model_selectionimporttrain_test_split 

fromsklearn.utilsimport shuffle 

fromsklearn.decompositionimport PCA 

fromsklearn.manifoldimport TSNE 

fromsklearn.datasetsimportmake_circles 

fromsklearn.metricsimportaccuracy_score,confusion_matrix 

fromsklearn.metricsimport f1_score 

fromsklearn.metricsimportprecision_score 

fromsklearn.metricsimportrecall_score 

fromsklearn.metricsimportcohen_kappa_score 

fromsklearn.metricsimportroc_auc_score 

fromtensorflow.keras.layersimport Conv2D, Input, ZeroPadding2D,BatchNormalization, Activation, 

MaxPooling2D, Flatten, Dense 

fromtensorflow.keras.modelsimport Model,load_model 

fromtensorflow.keras.callbacksimportTensorBoard,ModelCheckpoint 
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importplotly.graph_objsas go 

fromplotly.offlineimportinit_notebook_mode,iplot 

fromplotlyimport tools 

from keras.applications.vgg16 import VGG16,preprocess_input 

from keras.applications.inception_v3 import InceptionV3,inception_v3 

from keras.applications.resnet50 import ResNet50,resnet50 

fromkeras.preprocessing.imageimportImageDataGenerator 

fromkeras.preprocessing.imageimportload_img 

fromkeras.preprocessing.imageimportimg_to_array 

fromkerasimport layers 

fromkeras.modelsimport Model, Sequential 

fromkeras.modelsimport Model,load_model 

fromkeras.utils.np_utilsimportto_categorical 

fromkeras.layersimport Input 

fromkeras.layersimport Activation, Flatten, Dense 

fromkeras.layers.coreimport Dropout, Lambda 

fromkeras.layers.convolutionalimport Conv2D, Conv2DTranspose 

fromkeras.layers.poolingimport MaxPooling2D 

fromkeras.layers.mergeimport concatenate 

fromkeras.optimizersimport Adam,RMSprop 

fromkeras.callbacksimportEarlyStopping,ModelCheckpoint 

fromkerasimport backend as K 

importkeras 

init_notebook_mode(connected=True) 

RANDOM_SEED =123 

fromIPython.displayimportclear_output 

!pip installimutils 

clear_output() 
 

Uploading the dataset: 
 

fromzipfileimportZipFile 

file_name='data.zip' 

withZipFile(file_name,'r')aszipObj: 

zipObj.extractall() 

print('done') 
 

Data Augmentation: 
 

defaugment_data(fdir,sdir,num): 

img_gen=ImageDataGenerator(rotation_range=15, 

width_shift_range=0.05, 

height_shift_range=0.05, 

  rescale=1./255, 

shear_range=0.05, 

brightness_range=(0.1,1.5), 

horizontal_flip=True, 

vertical_flip=True, 

fill_mode='nearest') 
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for file inos.listdir(fdir): 

image=cv2.imread(fdir+'/'+file) 

image=image.reshape((1,)+image.shape) 

prefix='aug_'+ file[:-4] 

i=0 

forbatch in 

img_gen.flow(x=image,batch_size=1,save_to_dir=sdir,save_prefix=prefix,save_format='jpg'): 

i+=1 

if(i>num): 

break 
%%time  

sdir='/content/data' 

augment_data('/content/data/yes/',sdir+'/yes',6) 

augment_data('/content/data/no/',sdir+'/no',9) 

 

defsummary(): 

yes='/content/data/yes/' 

no='/content/data/no/' 

nyes=len(os.listdir(yes)) 

nno=len(os.listdir(no)) 

ntotal=nyes+nno 

print('Total Images : ',ntotal) 

print('Yes Images : {} ( {}% )'.format(nyes,np.round((nyes/ntotal*1.0)*100),3)) 

print('No Images : {} ( {}% )'.format(nno,np.round((nno/ntotal*1.0)*100),3)) 

 

Splitting the dataset into TRAIN, TEST and VAL and feature 

extraction: 
 

!apt-get install tree 

!mkdir TRAIN TEST VAL TRAIN/YES TRAIN/NO TEST/YES TEST/NO VAL/YES VAL/NO 

!tree -d 

 

IMG_PATH ='/content/brain_tumor_dataset' 

for CLASS inos.listdir(IMG_PATH): 

ifnotCLASS.startswith('.'): 

        IMG_NUM =len(os.listdir(IMG_PATH +'/'+ CLASS)) 

for(n, FILE_NAME)inenumerate(os.listdir(IMG_PATH +'/'+ CLASS)): 

img= IMG_PATH +'/'+  CLASS +'/'+ FILE_NAME 

if n <5: 

shutil.copy(img,'TEST/'+CLASS.upper()+'/'+ FILE_NAME) 

elif n <0.8*IMG_NUM: 

shutil.copy(img,'TRAIN/'+CLASS.upper()+'/'+ FILE_NAME) 

else: 
shutil.copy(img,'VAL/'+CLASS.upper()+'/'+ FILE_NAME) 

 

defload_data(dir_path,img_size=(100,100)): 

    X =[] 

    y =[] 

i=0 

labels=dict() 
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for path intqdm(sorted(os.listdir(dir_path))): 

ifnotpath.startswith('.'): 

labels[i]= path 

for file inos.listdir(dir_path+ path): 

ifnotfile.startswith('.'): 

img= cv2.imread(dir_path+'/'+ path +'/'+ file ) 

X.append(img) 

y.append(i) 

i+=1 

    X =np.array(X) 

    y =np.array(y) 

print(f'{len(X)} images loaded from {dir_path} directory.') 

return X, y, labels 

 

 

TRAIN_DIR ='TRAIN/' 

TEST_DIR ='TEST/' 

VAL_DIR ='VAL/' 

IMG_SIZE =(224,224) 

 

X_train,y_train, labels =load_data(TRAIN_DIR, IMG_SIZE) 

X_test,y_test, _ =load_data(TEST_DIR, IMG_SIZE) 

X_val,y_val, _ =load_data(VAL_DIR, IMG_SIZE) 

 

Image pre-processing and performing binary thresholding: 
 

defcrop_imgs(set_name,add_pixels_value=0): 

set_new=[] 

forimginset_name: 

gray= cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) 

gray= cv2.GaussianBlur(gray,(5,5),0) 

thresh= cv2.threshold(gray,45,255, cv2.THRESH_BINARY)[1] 

thresh= cv2.erode(thresh,None, iterations=2) 

thresh= cv2.dilate(thresh,None, iterations=2) 

cnts= cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 

cnts=imutils.grab_contours(cnts) 

        c =max(cnts, key=cv2.contourArea) 

extLeft=tuple(c[c[:,:,0].argmin()][0]) 

extRight=tuple(c[c[:,:,0].argmax()][0]) 

extTop=tuple(c[c[:,:,1].argmin()][0]) 

extBot=tuple(c[c[:,:,1].argmax()][0]) 

        ADD_PIXELS =add_pixels_value 

new_img=img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS,extLeft[0]-

ADD_PIXELS:extRight[0]+ADD_PIXELS].copy() 

set_new.append(new_img) 

returnnp.array(set_new) 

 

img= cv2.imread('/content/brain_tumor_dataset/yes/Y108.jpg') 

img= cv2.resize( 

img, 
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dsize=IMG_SIZE, 

interpolation=cv2.INTER_CUBIC 

) 
gray= cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) 

gray= cv2.GaussianBlur(gray,(5,5),0) 

thresh= cv2.threshold(gray,45,255, cv2.THRESH_BINARY)[1] 

thresh= cv2.erode(thresh,None, iterations=2) 

thresh= cv2.dilate(thresh,None, iterations=2) 

cnts= cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 

cnts=imutils.grab_contours(cnts) 

c =max(cnts, key=cv2.contourArea) 

extLeft=tuple(c[c[:,:,0].argmin()][0]) 

extRight=tuple(c[c[:,:,0].argmax()][0]) 

extTop=tuple(c[c[:,:,1].argmin()][0]) 

extBot=tuple(c[c[:,:,1].argmax()][0]) 

img_cnt=cv2.drawContours(img.copy(),[c],-1,(0,255,255),4) 

img_pnt=cv2.circle(img_cnt.copy(),extLeft,8,(0,0,255),-1) 

img_pnt=cv2.circle(img_pnt,extRight,8,(0,255,0),-1) 

img_pnt=cv2.circle(img_pnt,extTop,8,(255,0,0),-1) 

img_pnt=cv2.circle(img_pnt,extBot,8,(255,255,0),-1) 

ADD_PIXELS =0 

new_img=img[extTop[1]-ADD_PIXELS:extBot[1]+ADD_PIXELS,extLeft[0]-

ADD_PIXELS:extRight[0]+ADD_PIXELS].copy() 

 

X_train_crop=crop_imgs(set_name=X_train) 

X_val_crop=crop_imgs(set_name=X_val) 

X_test_crop=crop_imgs(set_name=X_test) 

 

defsave_new_images(x_set,y_set,folder_name): 

i=0 

for(img,imclass)inzip(x_set,y_set): 

ifimclass==0: 

cv2.imwrite(folder_name+'/'+'NO/'+str(i)+'.jpg',img) 

else: 
cv2.imwrite(folder_name+'/'+'YES/'+str(i)+'.jpg',img) 

i+=1 

 

!mkdir TRAIN_CROP TEST_CROP VAL_CROP TRAIN_CROP/YES TRAIN_CROP/NO 

TEST_CROP/YES TEST_CROP/NO VAL_CROP/YES VAL_CROP/NO 

save_new_images(X_train_crop,y_train,folder_name='/content/TRAIN_CROP') 

save_new_images(X_val_crop,y_val,folder_name='/content/VAL_CROP') 

save_new_images(X_test_crop,y_test,folder_name='/content/TEST_CROP/') 

 

defpreprocess_imgs(set_name,img_size): 

set_new=[] 

forimginset_name: 

img= cv2.resize( 

img, 

dsize=img_size, 

interpolation=cv2.INTER_CUBIC 

) 
set_new.append(preprocess_input(img)) 
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returnnp.array(set_new) 

 

X_train_prep=preprocess_imgs(set_name=X_train_crop,img_size=IMG_SIZE) 

X_test_prep=preprocess_imgs(set_name=X_test_crop,img_size=IMG_SIZE) 

X_val_prep=preprocess_imgs(set_name=X_val_crop,img_size=IMG_SIZE) 
 

Model construction: 

1. Load pre-trained models (with transfer learning) 

 
 

fromzipfileimportZipFile 

file_name="vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5.zip" 

withZipFile(file_name,'r')aszipfile: 

zipfile.extractall() 

print('Done') 

 

 

fromzipfileimportZipFile 

file_name="resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5.zip" 

withZipFile(file_name,'r')aszipfile: 

zipfile.extractall() 

print('Done') 

 

fromzipfileimportZipFile 

file_name="inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5.zip" 

withZipFile(file_name,'r')aszipfile: 

zipfile.extractall() 

print('Done') 

 

# load base model 

ResNet50_weight_path ='/content/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5' 

resnet50_x =ResNet50( 

weights=ResNet50_weight_path, 

include_top=False, 

input_shape=IMG_SIZE +(3,) 

) 

NUM_CLASSES = 1 

resnet50 = Sequential() 

resnet50.add(resnet50_x) 

resnet50.add(layers.Dropout(0.3)) 

resnet50.add(layers.Flatten()) 

resnet50.add(layers.Dropout(0.5)) 

resnet50.add(layers.Dense(NUM_CLASSES, activation='sigmoid')) 

resnet50.layers[0].trainable = False 

resnet50.compile( 

loss='binary_crossentropy', 

optimizer=RMSprop(lr=1e-4), 

metrics=['accuracy'] 

) 

resnet50.summary() 
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InceptionV3_weight_path ='/content/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5' 

inceptionV3 =InceptionV3( 

weights=InceptionV3_weight_path, 

include_top=False, 

input_shape=IMG_SIZE +(3,) 

) 

NUM_CLASSES = 1 

inception_v3 = Sequential() 

inception_v3.add(inceptionV3) 

inception_v3.add(layers.Dropout(0.3)) 

inception_v3.add(layers.Flatten()) 

inception_v3.add(layers.Dropout(0.5)) 

inception_v3.add(layers.Dense(NUM_CLASSES, activation='sigmoid')) 

inception_v3.layers[0].trainable = False 

inception_v3.compile( 

loss='binary_crossentropy', 

optimizer=RMSprop(lr=1e-4), 

metrics=['accuracy'] 

) 

inception_v3.summary() 

 

vgg16_weight_path ='/content/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5' 

vgg= VGG16( 

weights=vgg16_weight_path, 

include_top=False, 

input_shape=IMG_SIZE +(3,) 

) 

NUM_CLASSES =1 

vgg16 =Sequential() 

vgg16.add(vgg) 

vgg16.add(layers.Dropout(0.3)) 

vgg16.add(layers.Flatten()) 

vgg16.add(layers.Dropout(0.5)) 

vgg16.add(layers.Dense(NUM_CLASSES, activation='sigmoid')) 

vgg16.layers[0].trainable =False 

vgg16.compile( 

loss='binary_crossentropy', 

optimizer=RMSprop(lr=1e-4), 

metrics=['accuracy'] 

) 
vgg16.summary() 
 

2. Build model from scratch (without transfer learning) 

 
defbuild_model(in_shape): 

xinput=Input(in_shape) 

    x=ZeroPadding2D((2,2))(xinput) 

    x=Conv2D(32,(7,7),strides=(1,1))(x) 

    x=BatchNormalization(axis=3)(x) 
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    x=Activation('relu')(x) 

    x=MaxPooling2D((4,4))(x) 

    x=MaxPooling2D((4,4))(x) 

    x=Flatten()(x) 

    x=Dense(1,activation='sigmoid')(x) 

model=Model(inputs=xinput,outputs=x,name="Tumour_Detection_Model") 

return model 

model=build_model((240,240,3)) 

model.summary() 

 

Machine Learning training: 
 

TRAIN_DIR ='TRAIN_CROP/' 

VAL_DIR ='VAL_CROP/' 

 

train_datagen=ImageDataGenerator( 

rotation_range=15, 

width_shift_range=0.1, 

height_shift_range=0.1, 

shear_range=0.1, 

brightness_range=[0.5,1.5], 

horizontal_flip=True, 

vertical_flip=True, 

preprocessing_function=preprocess_input 

) 

 

test_datagen=ImageDataGenerator( 

preprocessing_function=preprocess_input 

) 

 

train_generator=train_datagen.flow_from_directory( 

    TRAIN_DIR, 

color_mode='rgb', 

target_size=IMG_SIZE, 

batch_size=32, 

class_mode='binary', 

seed=RANDOM_SEED 

) 

 

validation_generator=test_datagen.flow_from_directory( 

    VAL_DIR, 

color_mode='rgb', 

target_size=IMG_SIZE, 

batch_size=16, 

class_mode='binary', 

seed=RANDOM_SEED 

) 
 

import time 

start=time.time() 
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vgg16_history = 

vgg16.fit_generator(train_generator,steps_per_epoch=30,epochs=30,validation_data=validation_generato

r,validation_steps=30) 

end=time.time() 

print(end - start) 

 

import time 

start=time.time() 

inception_v3_history = inception_v3.fit_generator( 

train_generator, 

steps_per_epoch=30, 

epochs=30, 

validation_data=validation_generator, 

validation_steps=30, 

) 
end=time.time() 

print(end - start) 

 

import time 

start=time.time() 

resnet50_history = resnet50.fit_generator( 

train_generator, 

steps_per_epoch=30, 

epochs=30, 

validation_data=validation_generator, 

validation_steps=30, 

) 
end=time.time() 

print(end - start) 
 
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy']) 

model.fit(xtrain,ytrain,epochs=30,batch_size=32, verbose=1,validation_data=(xval,yval)) 

 

Evaluation of model performance: 
 

print('Train: %.3f, Test: %.3f'%(train_acc,test_acc)) 

accuracy=accuracy_score(y_test, predictions) 

print('Accuracy: %f'% accuracy)) 

precision=precision_score(y_test, predictions) 

print('Precision: %f'% precision) 

recall=recall_score(y_test, predictions) 

print('Recall: %f'% recall) 

f1 = f1_score(y_test, predictions) 

print('F1 score: %f'% f1) 

kappa=cohen_kappa_score(y_test, predictions) 

print('Cohens kappa: %f'% kappa) 

auc=roc_auc_score(y_test, predictions) 

print('ROC AUC: %f'%auc) 

matrix=confusion_matrix(y_test, predictions) 

print(matrix) 
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history_1= vgg16_history 

history_2=inception_v3_history 

history_3=resnet50_history 

defModelGraphTrainngSummary(history,N,model_name): 

print("Generating plots...") 

sys.stdout.flush() 

matplotlib.use("Agg") 

matplotlib.pyplot.style.use("ggplot") 

matplotlib.pyplot.figure() 

matplotlib.pyplot.plot(np.arange(0, N),history.history["loss"], label="train_loss") 

matplotlib.pyplot.plot(np.arange(0, N),history.history["val_loss"], label="val_loss") 

matplotlib.pyplot.title("Training Loss and Accuracy on Brain Tumor Classification") 

matplotlib.pyplot.xlabel("Epoch #") 

matplotlib.pyplot.ylabel("Loss/Accuracy of "+model_name) 

matplotlib.pyplot.legend(loc="lower left") 

matplotlib.pyplot.savefig("plot.png") 

 

defModelGraphTrainngSummaryAcc(history,N,model_name): 

print("Generating plots...") 

sys.stdout.flush() 

matplotlib.use("Agg") 

matplotlib.pyplot.style.use("ggplot") 

matplotlib.pyplot.figure() 

matplotlib.pyplot.plot(np.arange(0, N),history.history["accuracy"], label="train_accuracy") 

matplotlib.pyplot.plot(np.arange(0, N),history.history["val_accuracy"], label="val_accuracy") 

matplotlib.pyplot.title("Training Loss and Accuracy on Brain Tumor Classification") 

matplotlib.pyplot.xlabel("Epoch #") 

matplotlib.pyplot.ylabel("Accuracy of "+model_name) 

matplotlib.pyplot.legend(loc="lower left") 

matplotlib.pyplot.savefig("plot.png") 

 

forX_modelin[{'name':'VGG-16','history':history_1,'model':vgg16}, 

{'name':'Inception_v3','history':history_2,'model':inception_v3}, 

{'name':'Resnet','history':history_3,'model':resnet50}]: 

ModelGraphTrainngSummary(X_model['history'],30,X_model['name']) 

ModelGraphTrainngSummaryAcc(X_model['history'],30,X_model['name']) 

predictions=X_model['model'].predict(X_val_prep) 

predictions=[1if x>0.5else0for x in predictions] 

accuracy=accuracy_score(y_val, predictions) 

print('Val Accuracy = %.2f'% accuracy) 

confusion_mtx=confusion_matrix(y_val, predictions) 

    cm =plot_confusion_matrix(confusion_mtx, classes =list(labels.items()), normalize=False) 

 
defplot_metrics(history): 

train_loss=history['loss'] 

val_loss=history['val_loss'] 

train_acc=history['accuracy'] 

val_acc=history['val_accuracy'] 

plt.figure() 

plt.plot(train_loss, label='Training Loss') 



©RCCIIT, DEPT. OF EE  Page 36 
 
 

 

 

 

plt.plot(val_loss, label='Validation Loss') 

plt.title('Loss') 

plt.legend() 

plt.show() 

plt.figure() 

plt.plot(train_acc, label='Training Accuracy') 

plt.plot(val_acc, label='Validation Accuracy') 

plt.title('Accuracy') 

plt.legend() 

plt.show() 

 

plot_metrics(model.history.history) 

plt.figure() 

plt.plot(train_hist,color='r',linewidth=2,label='train') 

plt.plot(val_hist,color='g',linewidth=2,label='test') 

plt.xlabel('iterations') 

plt.legend() 

plt.show() 

 

vgg16.save('2020-04-24_VGG_model.h5') 

inception_v3.save('2020-04-24_inception_v3.h5') 

resnet50.save('2020-04-24_resnet50.h5') 

 

filepath="tumor-detection-{epoch:02d}-{val_acc:.2f}.model" 

checkpoint=ModelCheckpoint(filepath, monitor='val_acc', verbose=1,save_best_only=True, 

mode='max') 

 

from mpl_toolkits.axes_grid1 importmake_axes_locatable 

defimplot(mp,ax,cmap='gray'): 

im=ax.imshow(mp.astype(np.float32),cmap=cmap) 

divider=make_axes_locatable(ax) 

cax=divider.append_axes("right", size="5%", pad=0.05) 

cbar=plt.colorbar(im,cax=cax) 

xb,yb=get_batch(X_p_test,Y_p_test,X_n_test,Y_n_test,n=Nbatch) 

yh=sess.run(yhat,{x:xb}) 

ypred=np.argmax(yh,axis=3) 

foriinrange(7): 

plt.figure() 

fig,(ax1, ax2, ax3)=plt.subplots(1,3,sharey=True,figsize=(10,3)) 

implot(xb[i,:,:,0],ax1) 

implot(yb[i,:,:],ax2,cmap='Spectral') 

implot(ypred[i,:,:],ax3,cmap='Spectral') 

plt.grid('off') 

plt.tight_layout() 

plt.savefig('images_{}.pdf'.format(i),dpi=600) 

plt.show() 
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EVALUATION OF THE PREDICTIVE MODEL 

PERFORMANCE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: Loss and Accuracy Vs Epoch plots of a CNN model without pre-trained Keras models like VGG16, 

ResNet 50 and Inception v3 
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Fig: Loss and Accuracy Vs Epoch plots of VGG-16 
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Fig: Loss and Accuracy Vs Epoch plots of ResNet 50 model 
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Fig: Loss and Accuracy Vs Epoch plots of Inception v3 
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Fig: Confusion matrix plots (from top left) – VGG16, ResNet50 and Inception v3 

 

 

21 
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Fig: Comparison of 3 pre-trained Keras models 

 

 

Fig: Dice loss Vs Epoch after training with BRaTS MICCAI dataset 

Metric VGG 16  ResNet 50 Inception V3 

Train accuracy 0.940 0.820 0.640 

Test accuracy 0.600 0.800 0.500 

Overall accuracy 0.600000 0.800000 0.500000 

Precision 0.555556 0.800000 0.500000 

Recall 1.000000 0.800000 1.000000 

F1 score 0.714286 0.800000 0.666667 

 AUC 0.600000 0.800000 0.500000 
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Fig: Original (left), Ground Truth (middle) and our network model on the BRaTS 2015 dataset 

(right) 
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CONCLUSION 

Without pre-trained Keras model, the train accuracy is 97.5% and validation accuracy is 

90.0%.The validation result had a best figure of 91.09% as accuracy.It is observed that without 

using pre-trained Keras model, although the training accuracy is >90%, the overall accuracy is 

low unlike where pre-trained model is used. 

Also, when we trained our dataset without Transfer learning, the computation time was 

40 min whereas when we used Transfer Learning, the computation time was 20min. Hence, 

training and computation time with pre-trained Keras model was 50% lesser than without. 

Chances over over-fitting the dataset is higher when training the model from scratch 

rather than using pre-trained Keras.Keras also provides an easy interface for data augmentation. 

Amongst the Keras models, it is seen that ResNet 50 has the best overall accuracy as well 

as F1 score.ResNet is a powerful backbone model that is used very frequently in many computer 

vision tasks. 

Precision and Recall both cannot be improved as one comes at the cost of the other .So, 

we use F1 score too. 

Transfer learning can only be applied if low-level features from Task 1(image 

recognition) can be helpful for Task 2(radiology diagnosis). 

For a large dataset, Dice loss is preferred over Accuracy. 

For small size of data, we should use simple models, pool data, clean up data, limit 

experimentation, use regularisation/model averaging ,confidence intervals and single number 

evaluation metric. 

To avoid overfitting, we need to ensure we have plenty of testing and validation of data 

i.e. dataset is not generalised. This is solved by Data Augmentation. If the training accuracy too 

high, we can conclude that it the model might be over fitting the dataset. To avoid this, we can 

monitor testing accuracy, use outliers and noise, train longer, compare variance (=train 

performance-test performance). 
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FUTURE SCOPE 

Build an app-based user interface in hospitals which allows doctors to easily determine 

the impact of tumor and suggest treatment accordingly  

Since performance and complexity of ConvNets depend on the input data representation 

we can try to predict the location as well as stage of the tumor from Volume based 3D images. 

By creating three dimensional (3D) anatomical models from individual patients, training, 

planning and computer guidance during surgery is improved. 

Using VolumeNet with LOPO (Leave-One-Patient-Out) scheme has proved to give a 

high training as well as validation accuracy(>95%).In LOPO test scheme, in each iteration, one 

patient is used for testing and remaining patients are used for training the ConvNets, this iterates 

for each patient. Although LOPO test scheme is computationally expensive, using this we can 

have more training data which is required for ConvNets training. LOPO testing is robust and 

most applicable to our application, where we get test result for each individual patient. So, if 

classifier misclassifies a patient then we can further investigate it separately. 

Improve testing accuracy and computation time by using classifier boosting techniques like 

using more number images with more data augmentation, fine-tuning hyper parameters, training 

for a longer time i.e. using more epochs, adding more appropriate layers etc.. Classifier boosting 

is done by building a model from the training data then creating a second model that attempts to 

correct the errors from the first model for faster prognosis. Such techniques can be used to raise 

the accuracy even higher and reach a level that will allow this tool to be a significant asset to any 

medical facility dealing with brain tumors. 

For more complex datasets, we can use U-Net architecture rather than CNN where the 

max pooling layers are just replaced by upsampling ones. 

Ultimately we would like to use very large and deep convolutional nets on video 

sequences where the temporal structure provides very helpful information that is missing or far 

less obvious in static images. 

Unsupervised transfer learning may attract more and more attention in the future. 
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