
Automatic Bottle filling Machine using 
Micro-controller 

 
 
 

A Project report submitted in partial fulfillment 
of the requirements for the degree of B. Tech in Electrical Engineering 

by 

  
DEBANTA CHATTERJEE (11701618050) 

CHIRANTAN BHATTACHARYA (11701618051) 
SOUGATA SENAPATI (11701618025)  

DEBLEENA DAS (11701618047) 
 
 

Under the supervision of 
 

Mr. Budhaditya Biswas 
Assistant Professor  

Department of Electrical Engineering 
 

 

  
 
 
 

 
 
 
 
 
 
 
 
 

 
Department of Electrical Engineering 

RCC INSTITUTE OF INFORMATION TECHNOLOGY 
CANAL SOUTH ROAD, BELIAGHATA, KOLKATA – 700015, WEST BENGAL 

Maulana Abul Kalam Azad University of Technology (MAKAUT) 
© 2022  



 
This work has been dedicated to the memory of our beloved teacher  

Mr. Debobrata Bhattacharya 

Professor, Applied Electronics & Instrumentation Engineering  



    Department of Electrical Engineering 
RCC INSTITUTE OF INFORMATION TECHNOLOGY 

CANAL SOUTH ROAD, BELIAGHATA, KOLKATA – 700015, WEST BENGAL 
PHONE: 033-2323-2463-154, FAX: 033-2323-4668 

      Email: hodeercciit@gmail.com, Website: http://www.rcciit.org/academic/ee.aspx 
 

 
 

CERTIFICATE 
 

To whom it may concern 
 
 

 

 

 

  

(Prof. Dr. Debasish Mondal) 
HOD, Electrical Engineering Dept                  (External Examiner) 
RCC Institute of Information Technology 
 

 

      Assistant Professor 

(Budhaditya Biswas)      

Department  of  Electrical  Engineering    
RCC Institute of Information 

Technology  
 
Countersigned by 

This is to certi

21

fy that the project work entitled Automatic Bottle filling Machine using 
Micro-controller is the bonafide work carried out by DEBANTA CHATTERJEE 
(11701618050), CHIRANTAN BHATTACHARYA (11701618051), SOUGATA 
SENAPATI (11701618025), DEBLEENA DAS (11701618047), the students of B.Tech in 
the Department of Electrical Engineering, RCC Institute of Information Technology 
(RCCIIT), Canal South Road, Beliaghata, Kolkata-700015, affiliated to Maulana Abul 
Kalam Azad University of Technology (MAKAUT), West Bengal, India, during the 
academic year 20 -22, in partial fulfillment of the requirements for the degree of Bachelor 
of Technology in Electrical Engineering and that this project has not submitted previously 
for the award of any other degree, diploma and fellowship. 



 

ACKNOWLEDGEMENT 

 

It is our great fortune that we have got opportunity to carry out this project work 
under the supervision of Mr. Budhaditya Biswas in the Department of Electrical 
Engineering, RCC Institute of Information Technology (RCCIIT), Canal South 
Road, Beliaghata, Kolkata-700015, affiliated to Maulana Abul Kalam Azad 
University of Technology (MAKAUT), West Bengal, India. We express our 
sincere thanks and deepest sense of gratitude to our guide for his constant support, 
unparalleled guidance and limitless encouragement. 
 
We would like to convey our gratitude to all the faculty members and staffs of the 
Department of Electrical Engineering, RCCIIT for their whole hearted cooperation 
to make this work turn into reality. 
 
We are very thankful to Mr. Nitai Banerjee for his support and effort to build the 
shaft of the motor in the mechanical workshop. 
 
We would also like to convey our gratitude to Prof. Dr. Ashoke Mondal to guide 
us to build the radio frequency shielding and the driver board to interface the DC 
pump. 
 
We are very thankful to our department and to the authority of RCCIIT for 
providing all kinds of infrastructural facility towards the research work. 
 
 
Thanks to the fellow members of our group for working as a team. 
 

DEBANTA CHATTERJEE (11701618050) 

CHIRANTAN BHATTACHARYA (11701618051) 

SOUGATA SENAPATI (11701618025)  

DEBLEENA DAS (11701618047) 

 



 

To 
 
The Head of the Department 
Department of Electrical Engineering 
RCC Institute of Information Technology 
Canal South Rd. Beliagahata, Kolkata-700015 
 
Respected Sir, 

In accordance with the requirements of the degree of Bachelor of Technology in the Department 

of Electrical Engineering, RCC Institute of Information Technology, we present the following 

thesis entitled “Automatic Bottle filling Machine using Micro-controller”. This work was 

performed under the valuable guidance of Mr. Budhadtiya Biswas, Assistant Professor in the 

Dept. of Electrical Engineering. 

We declare that the thesis submitted is our own, expected as acknowledge in the test and reference 

and has not been previously submitted for a degree in any other Institution. 

 

Yours Sincerely, 

            

DEBANTA CHATTERJEE (11701618050) 

CHIRANTAN BHATTACHARYA (11701618051) 

SOUGATA SENAPATI (11701618025)  

DEBLEENA DAS (11701618047) 

 

 

 

 

 

 



 Contents 

      Topic          Page No. 

List of figures          i 

List of tables          ii 

Abbreviations and acronyms       iii 

Abstract          1  

Chapter 1 (Introduction)  

  1.1 Introduction        3 

  1.2 Sequential Process Control     3 

1.3 Overview and benefits      4 

  1.4 Organization of Thesis      4 

Chapter 2 (Literature Review)      6 

Chapter 3 (Theory)   

  3.1 Microcontroller      11 

  3.1.1 How do microcontrollers work?    11 

  3.1.2 What are the elements of a microcontroller?  11 

3.1.3 Microcontroller features     12 

3.1.4 Microcontroller Applications    12 

3.1.5 Microcontroller vs Microprocessors   12 

3.2 ESP32 Microcontroller      13 

 3.2.1 ESP32 Functional Blocks and Features  13 

 3.2.2 ESP32 Architectural Block Diagram   13 

 3.2.3 ESP32 Code       14 

 3.2.4 ESP32 Internal Memories & their Functions  15 

 3.2.5 ESP Pinout Diagram and Pins    15 



3.2.6 How to select ESP32 development board  20 

3.3 Installing ESP32 Add-on in Arduino IDE   20 

3.4 Stepper Motor Basics      22 

3.4.1 Stepper Motor working principles   23 

3.4.2 Stepper Motor Control     23 

3.4.3 Stepper Motor Driver Types    24 

3.4.4 Stepper Motor Uses & Applications   25 

3.5 A4988 Stepper Motor Driver Chip    25 

 3.5.1 A4988 Motor Driver Pinout    26 

 3.5.2 Power Connection Pins     26 

 3.5.3 Micro-step Selection Pins    26 

 3.5.4 Control Input Pins      27 

 3.5.5 Pins for Controlling Power States   28 

 3.5.6 Output Pins       29 

3.6 Interfacing OLED Graphic Display Module with ESP32 29 

 3.6.1 Pin Description      29 

 3.6.2 Wiring OLED display module to ESP32  30 

3.7 Overview of the Project      30 

3.8 Circuit Diagram       31 

Chapter 4 (Hardware Modeling)    

4.1 Main Features of the Prototype     33 

4.2 Photographs of the Main Controller Board   33 

4.3 Step by step operation of the prototype   34 

4.4 Components Required      34 

4.5 Hardware Interfacing      35 

 4.5.1 Relay Driver Interfacing with ESP32   35 



 4.5.2 A4988 Interfacing with ESP32    35 

 4.5.3 ESP32 OLED Display with Arduino IDE  36 

Chapter 5 (Logic & Operation)   

 5.1 Introduction        47 

 5.2 Flow chart        47 

 5.3 Principle & operations      48 

  5.3.1 Advantages of ESP32     48 

  5.3.2 Disadvantages of ESP32     48 

 5.4 Cost estimation of the project     48 

 5.5 Photographs of the prototype     49 

Chapter 6 (Conclusion & Future scope)  

 6.1 Conclusion        53 

 6.2 Results        53 

 6.3 Future works       53  

Chapter 7 (Reference)        54 

Appendix A (Hardware Description)     56 – 62 

Appendix B (Software Coding)      63 – 67 

Appendix C (Datasheets)       68  

  



List of Figures 

Sl. No. Figure numbers Page No. 

1 Concept of Industrial Process Control 3 
2 ESP32 Microcontroller 12 
3 ESP32 Architectural Block Diagram 14 
4 ESP32 Memory Block Diagram 14 
5 Cross Section of a Stepper Motor 23 
6 Stepper Motor Steps 23 
7 Motor Control Basic Scheme 24 
8 Stepper Motor Driver A4988 25 
9 A4988 Pin Diagram 26 
10 A4988 Power Pins 26 
11 A4988 Micro-step Pin Selection 27 
12 A4988 Control Pins  28 
13 A4988 Power State Control Pins 28 
14 A4988 Output Pins 29 
15 128×64 I2C Based OLED Module  29 
16 Wiring Connections for OLED Display Module with ESP32 30 
17 Overview of the Project 30 
18 Circuit Diagram of the Developed Prototype 31 
19 Main Controller and relay Board 33 
20 Relay Interfacing with ESP32 35 
21 A4988 Interfacing with ESP32  36 
22 0.96” OLED I2C Module 36 
23 Flow chart of the Program 47 
24 Main Controller Board 49 
25 Developed Prototype Model 50 
26 Pully & Driving Belt 51 
27 Complete Setup 51 
28 Limit Switch 51 
29 Pump & Driver Board 51 
30 Transformer less SMPS 5 Volt Power Supply 57 
31 Resistor 58 
32 Colour Code for resistance 58 
33 6-volt Cube Relay 59 
34 128X64 OLED Module 60 
35 ESP32 Development Board 60 
36 Piezo Buzzer 61 
37 Blank Glass Epoxy PCB Board 61 
38 NEMA 17 Stepper Motor 62 
39 A4988 Stepper Motor Driver 62 

 

budhabis@gmail.com
Typewritten text
i



              
 

 
List of Tables 

 
 

Sl. No. Table Page No. 

1 SPI Pin Mapping 19 
2 Micro-stepping Selection 27 
3 Component Listing 34 
4 OLED Interfacing with ESP32 37 
5 Costing of the Project 48 

 
  

budhabis@gmail.com
Typewritten text
ii



 

 

ABBREVIATIONS AND ACRONYMS 
 
 

OLED – Organic Light Emitting Diode 
SoC – System on a chip 
IC - Integrated Circuit 
PCB – Printed Circuit Board 
µC – Micro Controller 
BJT - Bi-polar Junction Transistor 
SPDT - Single Pole Double Throw 
NO - Normally Open 
NC - Normally Closed 
COM – Common 
LED - Light Emitting Diode 
POT – Potentiometer 
SMPS – Switch Mode Power Supply 
ISM – Industrial, scientific and medical 
USB – Universal serial bus 
SPI – Serial Peripheral Interface  
I2C – Inter-Integrated Circuit 
GPIO – General Purpose Input Output 
API – Application Program Interface  
SDA – Serial Data 
SCL – Serial Clock 

  

budhabis@gmail.com
Typewritten text
iii



 

 

ABSTRACT 
 

Automatic Bottle Filling Machines are most commonly used in beverages and soft drink 
industries. The field of automation has had a notable impact in a wide range of 
industries beyond manufacturing. Automation is the use of control systems and 
information technologies to reduce the need for human work in the production of goods 
and services. In the scope of industrialization, automation is a step beyond 
mechanization. Whereas mechanization provides human operators with machinery to 
assist them with the muscular requirements of work, automation greatly decreases the 
need for human sensory and mental requirements as well. Filling is a task carried out by 
a machine that packages liquid products such as cold drinks or water. 

 
There are two ways to filling a bottle automatically. One using a conveyor belt using 
position sensor (generally IR sensors or Infrared sensors) and the use of the PLC. But 
that involves high cost. Second one using fixed position of bottles and the time 
calculation to place the bottle bellow the liquid pipe for filling it us. This eliminates the 
cost of position sensors, conveyor belt and PLC. 

 
In this project a stepper motor is used to move the bottle which is controlled by the 
controller and time calculation is used to open the pump for filling up the bottle. A limit 
switch is used to find the initial position of the platform containing the bottle. This 
project is prototype to such machines used to fill the liquid in the bottle with a fixed 
quantity or fixed level, it eliminates the chances unevenness from bottle to bottle or 
inaccuracy which is a very common mistake while filling manually. These projects reduce 
the labour effort and make work more accurate and reliable. 

 

 

 

 

 

 

1



 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1 
(Introduction) 

  

2



 1.1 INTRODUCTION 

      The project intends to design, implement and monitor an “Automatic Bottle Filling 
Machine using Micro-Controller” using position control mechanism with the help of Micro-
Controller (ESP-32). A prototype has been developed to illustrate the project. In this project the 
limit switch sets the initial position and the stepper motor rotates for a fixed angle which is 
calculated as (Total angle of rotation) / (No. of bottles placed) and the time for filling liquid in the 
bottle is calculated previously. OLED displays the status of the bottle filling and buzzer generates 
an audio signal once each bottle is filled.    

The developed prototype consists of the following main section.  

 Rotating platform – responsibility is to carry the bottles and placed the bottle bellow the 
water pipe. 

 Stepper motor – it moves the rotating platform  
 Bearing and pully assembly – this part holds the rotating platform and synchronize with the 

movement of the stepper motor  
 Control board – it consists of ESP32 microcontroller, stepper motor driver, relay driver, 

OLED, voltage regulator etc. The heart of the project. Controls the stepper motor, water 
pump and display all the information in the OLED.  
 
 

1.2 SEQUENTIAL PROCESS CONTROL 

A Process Control in continuous industrial production processes is a discipline that uses industrial 
control systems to achieve a production level of consistency, economy and safety which could not 
be achieved purely by human manual control. It is implemented widely in industries such 
as automotive, mining, dredging, oil refining, pulp and paper manufacturing, chemical processing  

Figure 1: Concept of Industrial Process Control 

and power generating plants. Now a control system in which the individual steps are processed in a 
predetermined order, progression from one sequence step to the next being dependent on defined 
conditions being satisfied, is a Sequential Process Control. Such a system is generally time-
controlled, in which the step transition conditions are functions of time only or it may also be 
external-event dependent, where the conditions are functions of Input signals only or it also may 
be combinations of these (and perhaps more complex) conditions. 

Early process control breakthroughs came most frequently in the form of water control devices. 
Later process controls inventions involved basic physics principles. With the dawn of the 
Industrial Revolution in the 1760s, process controls inventions were aimed to replace human 
operators with mechanized processes. 

3



Process control of large industrial plants has evolved through many stages. Initially, control would 
be from panels local to the process plant. However, this required a large manpower resource to 
attend to these dispersed panels, and there was no overall view of the process. The next logical 
development was the transmission of all plant measurements to a permanently-manned central 
control room. Effectively this was the centralization of all the localized panels, with the advantages 
of lower manning levels and easier overview of the process. With the coming of electronic 
processors, graphic displays and different communication protocols it became possible to replace 
these discrete controllers with computer-based algorithms, hosted on a network of input/output 
racks with their own control processors and also to replace wired control with wireless system. 

Now generally process control is associated with industrial process industries where batch control 
of repeated processes is required. A great example of process control is temperature control during 
any industrial process. Different temperatures are maintained for different times spans according to 
settings. This also can be done manually but that will require large man power and time and will 
consist of heavy inaccuracy. Using this microcontroller based automated system, this can be done 
effective from anywhere at any time with great accuracy. 

1.3  Overview and benefits 

Maintained measurement and control in manufacturing processes helps facilitate a business overall 
success. That’s easier said than done, though. Overseeing the regulation of a large variety of 
processes can be extremely overwhelming. That’s where the implementation of process control 
instrumentation comes in. 

The automatic water bottle filling mainly developed using PLC and conveyor belt. It includes 
much cost. The same can be developed using synchronized process control which eliminates the 
use of the sensors and conveyor belt. The cost also reduces much in this process.  

Although process control technology has advanced rapidly since the mid-1980s, the latest systems 
still follow the traditional hierarchical or pyramid-like structure. The lowest level of the pyramid 
works to make sure a particular process doesn't vary by more than an allowed amount. It monitors 
the operation of each part of the process, identifies unwanted changes and initiates any necessary 
corrective actions. Lower-level controls can't handle complex situations like equipment faults. 
These have to be dealt with either manually, by an operator, or by other controls at a higher level 
of the hierarchy. Further up the pyramid the system controls the overall production process and 
makes sure it continues to operate efficiently. 

Process control systems are central to maintaining product quality. Using proper instrumentation, 
control systems maintain the proper ratio of ingredients. Without this standard of control, products 
would vary and quality would be impaired. With improved quality comes higher levels of safety 
too. The process control systems automatically warn you of any abnormalities which minimizes 
the risk of accidents. By shifting focus to cost-effective and objective-reaching technologies, the 
ability to take on more work will increase significantly.  

The thesis is organised into seven chapters including the chapter of introduction. Each 
chapter is different from the other and is described along with the necessary theory required 
to comprehend it. 

4

1.4 Organisation of thesis 



Chapter 2 deals with the literature reviews. From this chapter we can see before our project 
who else works on this topic and how our project is different and advance from those 
projects. 
 
Chapter 3 deals with the theory required to do the project. The basic of process control with 
microcontroller and the interfacing of the stepper motor, OLED and pump control are 
described here. The overview of the project and software simulation of the project is also 
listed in this chapter. 
 
Chapter 4 deals with the hardware modelling of the projects. The main features, 
photographs, step by step operation of the prototype, component listing and the hardware 
interfacing of the required components are described here. 
 
Chapter 5 describes the basic operation of the circuit. A flow chart is presented on the actions 
that would take in the controller beginning from the positioning of the bottles and filling it. 
Advantages and disadvantages and cost estimation are listed in this chapter. 
 
Chapter 6 concludes the work performed so far. The possible limitations in proceeding 
research towards this work are discussed. The future work that can be done in improving the 
current scenario is mentioned. The future potential along the lines of this work is also 
discussed. 

Chapter 7 References are listed in this chapter 

Appendix A, B & C Hardware description, software coding and datasheets are listed here. 

 

 

 

 
5



 

 

 

 

CHAPTER 2 
(Literature Review) 

  
6



[1] Deepika Saikia, Prajakta Powar, Animesh Gaurav “Automatic Bottle Filling System”, 
International Research Journal of Engineering and Technology (IRJET), e-ISSN: 2395-0056, p-
ISSN: 2395-0072 

Liquid filling machine is capable of incorporating a tank, bottle or container to fill the liquid. Liquid 
filling machines are important equipment in various industries like cosmetics, food, etc. where liquids 
are to be packed in various types of containers. This machine helps in reducing wastage and can be 
easily and efficiently packed into containers that to very fast. In our proposed technology we have 
designed an automatic liquid filling machine which will work on flow meters. We have use 
microcontroller, flow meter, solenoid valve, stepper motor, and proximity sensor and conveyor belt. 
The paper includes working of the machine, simulation result and also the scope. Our project is a 
combination of electronics and mechanical work and it is used in industrial production and it is also 
suitable for small scale industries. 
 
[2] Ashwini P. Somawanshi, Supriya B. Asutkar, Sachin A. More “Automatic Bottle Filling 
Using Microcontroller Volume Correction”, International Journal of Engineering Research & 
Technology (IJERT), ISSN: 2278-0181, Vol. 2 Issue 3, March – 2013 

The field of automation has had a notable impact in a wide range of industries beyond manufacturing. 
Automation is the use of control systems and information technologies to reduce the need for human 
work in the production of goods and services. In the scope of industrialization, 
automation is a step beyond mechanization. Whereas mechanization provides human operators with 
machinery to assist them with the muscular requirements of work, automation greatly decreases the 
need for human sensory and mental requirements as well. Filling is a task carried out by a machine that 
packages liquid products such as cold drinks or water. The bottle filling project serves as an 
interdisciplinary engineering design experience. It introduces aspects of computer, electronics and 
mechanical engineering, including the following five primary knowledge areas: 1) Machining & 
Fabrication 2) Electronics circuit prototyping and Programming 3) Sensor and Actuator application 4) 
Mechanical design 5) Project Planning 6) Presentation Skills. 
 
[3] Aniruddh Guha, Adarsh Ganveer, Manjari Kumari, Ajay Singh Rajput, “AUTOMATIC 
BOTTLE FILLING MACHINE”, International Research Journal of Engineering and 
Technology (IRJET), e-ISSN: 2395-0056, p-ISSN: 2395-0072 

The world is increasing moving towards Automation, i.e., the process of performing various tasks 
without or with minimum human intervention. It increases the overall efficiency and output of a 
process. It involves establishing control loops using microcontrollers like Arduino or PLCs, which 
control the working of the entire plant. Filling is an operation in which a predetermined amount of 
liquid needs to be precisely filled in the bottle. It is used by soft drinks industry, packaged water 
industry and various pharmaceuticals. The operation was earlier carried out by humans and involved 
placing one bottle at a time on the conveyor belt and filling it. The process then was slow, involved 
spilling of liquid and unequal quantities of liquid in bottles. The process is now carried out by PLCs in 
large manufacturing units now. PLC machines are very expensive. Due to their high costs, filling is 
still carried out manually in small manufacturing units. This results in shortcomings in the operation 
and at drives up labour costs. This problem compels us to design a system with reduced costs. This can 
be achieved by using Arduino as a microcontroller. The proposed project will reduce cost for small 
scale industries and help them in setting up automated plants. 
 

7



[4] J.Dharanidharan, R. Puviarasi, “AUTOMATIC BOTTLE FILLING MACHINE”, 
International Conference on Recent Trends in Computing, Communication and Networking 
Technologies (ICRTCCNT’19) Oct 18-19, 2019, Kings Engineering College, Chennai, 
TamilNadu, India. 

The field of automation includes a notable impact in a very wide selection of industries on the far side 
producing. Within the standard technique main half is system which has ‘C’ program, Arduino or 
microcontroller to regulate entire system. The matter arrested in manual filling method like spilling of 
water whereas filling it in bottle, equal amount of water might not be crammed, delay thanks to natural 
activities could happens. To rectify the higher than mentioned issues the projected system in designed. 
In projected system the advanced technology of PLC is employed. With this technique that operates 
mechanically, each method may be swish and therefore the method of replenishment will scale back 
employee price and operation price. with mounted hard and fast set amount or fixed level, it eliminates 
the possibilities like varied amount from bottle to bottle or quality which might be happen with the 
manually filling. This project scale back labour impact and build additional correct and reliable. 
 
[5] Arthur Pius Santiago [2010]: Insecticide Bottle Filling and Capping machines in De La Salle 
University. The 11th Asia pacific Industrial Engineering and Management Systems Conference. 
The 14th Asia Pacific Regional Meeting of the International Foundation for production 
Research. 

Insecticide Bottle Filling and Capping Machines have been one of the industry related projects in the 
Manufacturing Engineering and Management Department of De La Salle University Manila. The 
initial attempt was supported by Mapecon Philippines, Inc., a private business entity which formulates 
its own insecticide. This paper presents machine prototypes to replace the manual process. The 
prototypes shown were able to consistently fill and cap 500ml bottles of Big R Insecticide. 
Experiments were conducted to determine the production rate of the prototypes as well as to test 
whether the volume of insecticide dispensed are within company specified limits. 
 
[6] Samarth Nainani, Akshata Rupawate, Shoaib Sayyed, Siddharth Poojary, Vaishali Bodhale, 
“AUTOMATIC BOTTLE FILLING SYSTEM USING ARDUINO UNO”, International 
Research Journal of Modernization in Engineering Technology and Science, 
Volume:03/Issue:04/April-2021, e-ISSN: 2582-5208 

The current state of industries is to embrace new technologies to proceed towards automation. The 
identical vision is exercised in bottle-filling plants. To help small-scale industries all operations are 
nearly automated. And in small-scale industries, the operations are still carried out by humans which 
involved some imperfections. The automation of bottle filling involves the use of PLC which are used 
in large-scale industries and are very costly. The study emphasizes on reduction in cost using the 
Arduino micro-controller. The manual filling process has many problems like spilling water while 
filling it in a bottle, etc. This work generally emphasizes small industries and we aim to make these 
small-scale industries more efficient and to eliminate problems faced by small-scale bottle filling 
industries. With this technique that operates automatically, every process can be smooth and the 
process of refilling will cut back the hands price and operation time. 
 
[7] Kiran Chaudhari, Aaqib Momin, Ritu Magare, Omkar More, Aniket Kantale, “Automated 
Filling Machine”, International Research Journal of Engineering and Technology (IRJET), e-
ISSN: 2395-0056, p-ISSN: 2395-0072. 

8



India: a country with population of over a billion, the demand for food and other daily necessities in 
people’s everyday life keeps on rising sharply. The world is modernizing at a rapid rate and the current 
COVID-19 pandemic situation has resulted in entrepreneurs becoming more technology oriented over 
labour force. This brings up the need for more automation in every sector where there is involvement 
of human work force be it small scale or an industry. This research project focuses on reducing the 
customer to vendor gap by eliminating the involvement of labour at small grocery or other enterprises. 
 
[8] Bipin Mashilkar, Pallavi Khaire and Girish Dalve, “Automated Bottle Filling System,” 
International Research Journal of Engineering and Technology (IRJET), e-ISSN: 2395-0056, p-
ISSN: 2395-0072; Volume 02, Issue 07; October 2015. 

The field of automation has a notable impact in a wide range of industries beyond manufacturing. 
Automation plays an increasingly important role in the world economy. Filling is a task carried out by 
a machine that packages liquid products such as cold drinks or water. In past, humans were the main 
method for controlling a system. More recently, electricity has been used for control and electrical 
control is based on microcontrollers for various purposes like medicines, pharmaceutical plants, 
chemical plants etc. There microcontrollers control the complete working of the system. It is common 
to use microcontrollers to make simple logical control decision. The automation in bottle filling 
industry comes with increased electrical components. Essential requirements of each component in the 
system is important to be studied in ordered to understand how each part works in coordination with 
other parts in the system. This study mainly includes design, fabrication and control system for 
automated bottle filling system. The main part is control system which includes embedded C 
programming in Arduino microcontroller to control various components in system. A conveyor system 
with sensors and electromagnetic valve is fabricated for this purpose. The entire sequence of operation 
is controlled by Arduino microcontroller. 
 
[9] Nisarg A Solanki, Pratik G Raj, Saumil P Patel, Charmish D Rajput, “Automatic Liquid 
Filling Machine”, International Journal of Engineering Research & Technolog 

Liquid filling machines are equipment used for packaging of various liquid products, mainly food and 
cold drinks. Depending on the different products, the different containers to be filled can either be a 
bottle or bag. These machines are usually found in manufacturing industry to promote quality and 
efficiency on the manufacturing process. In our proposed technology we suggest automatic liquid 
filling machine which will work on gear pump. Gear pump will be synchronized with encoder will 
give command to rotate particular rotation and hence pump will deliver particular volume. Pump will 
be connected with nozzle to transfer material into bottles. Volume setting from one size to another size 
will be done by changing command to gear pump. Once it is calibrated, volume setting will be done in 
seconds. So it will give more production and will save lot of manpower. 

 

 
9



 

 

 

 

CHAPTER 3 
(Theory) 

 

 

 

10



3.1  Microcontroller (MCU):  

A microcontroller is a compact integrated circuit designed to govern a specific operation in 
an embedded system. A typical microcontroller includes a processor, memory and input/output 
(I/O) peripherals on a single chip. 

3.1.1  How do microcontrollers work? 

A microcontroller is embedded inside of a system to control a singular function in a device. It does 
this by interpreting data it receives from its I/O peripherals using its central processor. The 
temporary information that the microcontroller receives is stored in its data memory, where the 
processor accesses it and uses instructions stored in its program memory to decipher and apply the 
incoming data. It then uses its I/O peripherals to communicate and enact the appropriate action. 

Microcontrollers are used in a wide array of systems and devices. Devices often utilize multiple 
microcontrollers that work together within the device to handle their respective tasks. 

3.1.2  What are the elements of a microcontroller? 

The core elements of a microcontroller are: 

1. The processor (CPU) -- A processor can be thought of as the brain of the device. It 
processes and responds to various instructions that direct the microcontroller's function. 
This involves performing basic arithmetic, logic and I/O operations. It also performs data 
transfer operations, which communicate commands to other components in the larger 
embedded system. 

2. Memory -- A microcontroller's memory is used to store the data that the processor receives 
and uses to respond to instructions that it's been programmed to carry out. A 
microcontroller has two main memory types: 

3. Program memory, which stores long-term information about the instructions that the CPU 
carries out. Program memory is non-volatile memory, meaning it holds information over 
time without needing a power source. 

4. Data memory, which is required for temporary data storage while the instructions are being 
executed. Data memory is volatile, meaning the data it holds is temporary and is only 
maintained if the device is connected to a power source. 

 I/O peripherals -- The input and output devices are the interface for the processor to the outside 

world. The input ports receive information and send it to the processor in the form of binary 

data. The processor receives that data and sends the necessary instructions to output devices 

that execute tasks external to the microcontroller. 

Other supporting elements of a microcontroller include: 

 Analog to Digital Converter (ADC) -- An ADC is a circuit that converts analog signals to 

digital signals. It allows the processor at the center of the microcontroller to interface with 

external analog devices, such as sensors. 

 Digital to Analog Converter (DAC) -- A DAC performs the inverse function of an ADC and 

allows the processor at the center of the microcontroller to communicate its outgoing signals to 

external analog components. 

11



 System bus -- The system bus is the connective wire that links all components of the 

microcontroller together. 

 Serial port -- The serial port is one example of an I/O port that allows the microcontroller to 

connect to external components. It has a similar function to a USB or a parallel port but differs 

in the way it exchanges bits. 

3.1.3  Microcontroller features 

 A microcontroller's processor will vary by application. Options range from the simple 4-bit, 8-

bit or 16-bit processors to more complex 32-bit or 64-bit processors. Microcontrollers can use 

volatile memory types such as random access memory (RAM) and non-volatile memory types -

- this includes flash memory, erasable programmable read-only memory (EPROM) and 

electrically erasable programmable read-only memory (EEPROM). 

 Generally, microcontrollers are designed to be readily usable without additional computing 

components because they are designed with sufficient onboard memory as well as offering pins 

for general I/O operations, so they can directly interface with sensors and other components. 

3.1.4  Microcontroller applications 

Microcontrollers are used in multiple industries and applications, including in the home and 
enterprise, building automation, manufacturing, robotics, automotive, lighting, smart energy, 
industrial automation, communications and internet of things (IoT) deployments. 

One very specific application of a microcontroller is its use as a digital signal processor. Frequently, 
incoming analog signals come with a certain level of noise. Noise in this context means ambiguous 
values that cannot be readily translated into standard digital values. A microcontroller can use its 
ADC and DAC to convert the incoming noisy analog signal into an even outgoing digital signal. 

 

 

 

Figure 2: ESP 32 Microcontroller 

3.1.5  Microcontrollers vs. microprocessors 

The distinction between microcontrollers and microprocessors has gotten less clear as chip density 
and complexity has become relatively cheap to manufacture and microcontrollers have thus 
integrated more "general computer" types of functionalities. On the whole, though, microcontrollers 
can be said to function usefully on their own, with a direct connection to sensors and actuators, 
where microprocessors are designed to maximize compute power on the chip, with internal bus 

12



connections (rather than direct I/O) to supporting hardware such as RAM and serial ports. Simply 
put, coffee makers use microcontrollers; desktop computers use microprocessors. 

3.2  ESP32 microcontroller 

ESP32 is created by Espressif Systems with a series of SoC (System on a Chip) and modules which 
are low cost with low power consumption. 

This new ESP32 is the successor to the well-known ESP8266(became very popular with its inbuilt 
WiFi). ESP32 not only has Built in WiFi but also has Bluetooth and Bluetooth Low Energy. In other 
words, we can define ESP32 as “ESP8266 on Steroids”. 

ESP32 chip ESP32-D0WDQ6 is based on a Tensilica Xtensa LX6 dual core microprocessor with an 
operating frequency of up to 240 MHz. 

The small ESP32 package has a high level of integrations such as: 

 Antenna switches 
 Balun to control RF 
 Power amplifier 
 Low noise reception amplifier 
 Filters and power management modules 

On top of all that, it achieves very low power consumption through power saving features 
including clock synchronization and multiple modes of operation. The ESP32 chip’s quiescent 
current is less than 5 μA which makes it the ideal tool for your battery powered projects or IoT 
applications. 

3.2.1  ESP32 Functional Blocks and Features 

Although in the previous table you can notice some main technical characteristics of the ESP32, the 
truth is not everything is in the table. In fact, many details are missing. To get to know all the 
features of this magnificent SoC it is necessary to refer  

 ESP32 Technical Datasheet 

 ESP32 Technical Reference Manual 
 

3.2.2  ESP32 Architectural Block diagram 

Below is the Architectural block diagram of ESP32 which shows all the functional blocks of 
ESP32 SOC. 

13



 
Figure 3: ESP32 Architectural Block diagram 

3.2.3  ESP32 Core 

As we have already mentioned that the ESP32 has dual core low-power Tensilica Xtensa 32-bit 
LX6 microprocessors. 

Memory 

In most of the microcontrollers based on Arduino, there are three types of memories: 

 Program memory: to store the sketch. 

 SRAM memory: to store the variables that are used in the code. 

 EEPROM memory: to store variables that do not lose their value even when the device is 
turned off. 

  

Figure 4: ESP32 memory Block diagram 

It can be observed from the above core block image, it has an ultra-low-power co-processor that is 
used to perform analog-digital conversions and other operations while the device is operating 
in deep sleep low-power mode. In this way, a very low consumption by the SoC is achieved. 

It is important to note that these processors offer great typical advantages of a digital signal 
processor: 

14



 Operating frequency: 240 MHz (executes instructions 15 times faster than an Arduino UNO 
board) 

 It allows to perform operations with real numbers (numbers with commas) very efficiently. 

 Allows you to multiply large numbers instantly. 

In ESP32 this does not happen, in fact there are more types of memories that are usually classified 
into internal and external. 

The internal memories are those that are already included in the SoC, and the external are those that 
can be added to expand the capacity of the system. 

Many ESP32- based development boards add external memory for a better performing system. 

3.2.4  ESP32 Internal memories and their functions: 

 ROM memory (448 KiB): this memory is write-only, that is, you cannot reprogram it. This is 
where the codes that handle the Bluetooth stack, the Wi-Fi physical layer control, some 
general-purpose routines, and the bootloader to start the code from external memory are stored. 

 Internal SRAM memory (520 KiB): this memory is used by the processor to store both data and 
instructions. Its advantage is that it is much easier for the processor to access than the external 
SRAM. 

 RTC SRAM (16 KiB): this memory is used by the co-processor when the device operates in 
deep sleep mode. 

 Efuse (1 Kilobit): 256 bits of this memory are used by the system itself and the remaining 768 
bits are reserved for other applications. 

 Flash embedded (Embedded flash): This memory is where our application code is stored. The 
amount of memory varies depending on the chip used: 
0 MB (chips ESP32-D0WDQ6, ESP32-D0WD, ESP32-S0WD) 
2 MB (chip ESP32-D2WD) 
4 MB (Chip ESP32-PICO-D4) 

For ESP32s that do not have embedded memory or simply when memory is insufficient for your 
application, it is possible to add more memory externally: 

 Up to 16 MB of external flash memory can be added. This way you can develop more complex 
applications. 

 It also supports up to 8 MB of external SRAM memory. 

Therefore, it is difficult for you to find yourself limited in memory when implementing an 

application using this platform. 

3.2.5 ESP32 Pinout diagram and Pins 

It can be seen from the above image of ESP32 WROOM module pinout diagram, all the different 
types of pins are mentioned in different colors which we are going to explain in detail below. 

Digital pins 

The ESP32 has a total of 34 digital pins. These pins are similar to Arduino digital pins which allows 
you to add LED display, OLED display, sensors, buttons, buzzers, etc. to our projects. 

15



Most of these pins support the use of internal pull-up, pull-down, and high impedance status as 
well. This makes them ideal for connecting buttons and matrix keyboards, as well as for applying 
LED control techniques such as the well-known Charlieplexing. 

ESP32 WROOM module has 25 GPIO pins out of which there are only input pins, pins with input 
pull up and pins without internal pullup. 

Maximum current drawn per a single GPIO is 40mA according to the “Recommended Operating 
Conditions” section in the ESP32 datasheet. 

Input only pins:  

 GPIO 34 

 GPIO 35 

 GPIO 36 

 GPIO 39 

Pins with pull up INPUT_PULLUP 

 GPIO14 

 GPIO16 

 GPIO17 

 GPIO18 

 GPIO19 

 GPIO21 

 GPIO22 

 GPIO23 

Pins without internal pull up 

 GPIO13 

 GPIO25 

 GPIO26 

 GPIO27 

 GPIO32 

 GPIO33 

 
ADC (Analog to digital converters) 

Some of the pins listed in the pinout diagram can also be used to interact with analog sensors, same 
as analog pins of an Arduino board. 

For this, the ESP32 has a 12-bit (0-4096 resolution which means when voltage observed is 0 the 
value is 0 and when max voltage like 3.3v is observed the value goes to 4096), 18-channel analog to 
digital converter, which means you can take readings from up to 18 analog sensors. 

This allows you to develop very compact connected applications, even when using multiple analog 
sensors. 

Analog input pins: 

16



 ADC1_CH0 (GPIO 36) 

 ADC1_CH1 (GPIO 37) 

 ADC1_CH2 (GPIO 38) 

 ADC1_CH3 (GPIO 39) 

 ADC1_CH4 (GPIO 32) 

 ADC1_CH5 (GPIO 33) 

 ADC1_CH6 (GPIO 34) 

 ADC1_CH7 (GPIO 35) 

 ADC2_CH0 (GPIO 4) 

 ADC2_CH1 (GPIO 0) 

 ADC2_CH2 (GPIO 2) 

 ADC2_CH3 (GPIO 15) 

 ADC2_CH4 (GPIO 13) 

 ADC2_CH5 (GPIO 12) 

 ADC2_CH6 (GPIO 14) 

 ADC2_CH7 (GPIO 27) 

 ADC2_CH8 (GPIO 25) 

 ADC2_CH9 (GPIO 26) 

 
DAC (Digital to Analog Converters) 

PWM signals are used on most Arduino boards to generate analog voltages. The ESP32 has two 8 bits 
digital to analog converters. 

This allows two pure analog voltage signals to be generated. These converters can be used to: 

 Control an analog circuit 
 Manipulate the intensity of an LED 
 Can even add a small amp and speaker to your project to play a song. 

DAC Pins: 

 DAC1 (GPIO25) 
 DAC2 (GPIO26) 

Capacitive Touch GPIOs 

In case if somebody wants to develop applications with no mechanical buttons, they can use the 
touch sensitive pins on ESP32s to achieve it. 

These pins are capable of detecting the small variations produced when approaching a finger to the 
pin. In this way, it is possible to create all kinds of controls such as buttons or slide bars without the 
need for mechanical components. 

Capacitive Touch pins: 

 T0 (GPIO 4) 

 T1 (GPIO 0) 

17



 T2 (GPIO 2) 

 T3 (GPIO 15) 

 T4 (GPIO 13) 

 T5 (GPIO 12) 

 T6 (GPIO 14) 

 T7 (GPIO 27) 

 T8 (GPIO 33) 

 T9 (GPIO 32) 

 
RTC 

As we already learnt about the RTC GPIO support in the core section. The GPIOs which are routed to 
the RTC low-power management subsystem can be used when the ESP32 is in deep sleep. These 
RTC GPIOs can be used to wake up the ESP32 from deep sleep when the Ultra-Low Power (ULP) 
co-processor is running. The following GPIOs can be used as an external wake up source. 

 RTC_GPIO0 (GPIO36) 

 RTC_GPIO3 (GPIO39) 

 RTC_GPIO4 (GPIO34) 

 RTC_GPIO5 (GPIO35) 

 RTC_GPIO6 (GPIO25) 

 RTC_GPIO7 (GPIO26) 

 RTC_GPIO8 (GPIO33) 

 RTC_GPIO9 (GPIO32) 

 RTC_GPIO10 (GPIO4) 

 RTC_GPIO11 (GPIO0) 

 RTC_GPIO12 (GPIO2) 

 RTC_GPIO13 (GPIO15) 

 RTC_GPIO14 (GPIO13) 

 RTC_GPIO15 (GPIO12) 

 RTC_GPIO16 (GPIO14) 

 RTC_GPIO17 (GPIO27) 

SD / SDIO / MMC driver 

This peripheral allows the ESP32 to interact with SD and MMC cards directly. In fact, by combining 
this controller with the analog digital converter it is possible to improve our little audio player. 

UART 

Many microcontrollers have UART modules, which on Arduino are known as Serial ports. These 
allow asynchronous communications between two devices using only two pins. 

The ESP32 has three UART ports: 

 UART0 

 UART1 

18



 UART2 

All of these are compatible with RS-232, RS-485 and IrDA protocols. 

I2C 

The ESP32 have two interfaces I2C or TWI that support the operating modes master and slave. Its 
features include: 

 Standard mode (100 Kbit/s) 

 Fast mode (400 Kbit/s) 

 7 and 10 bit addressing 

I2C Pins 

 GPIO 21 (SDA) 

 GPIO 22 (SCL) 

 

SPI 

The ESP32 also has SPI communication. It has three fully functional buses: 

 Four transfer modes: this means that it is compatible with all or almost all SPI and QSPI devices 
available on the market. 

 All SPI ports are capable of high speeds (theoretically up to 80 MHz). 
 64-byte buffer for transmission and reception. 

By default, the pin mapping for SPI is: 

Table1: SPI pin mapping 

SPI MOSI MISO CLK CS 
VSPI GPIO 23 GPIO 19 GPIO 18 GPIO 5 
HSPI GPIO 13 GPIO 12 GPIO 14 GPIO 15 

 
 

Infrared remote controller 

The ESP32 also allows the transmission and reception of signals using various infrared protocols (the 
same as those used by the television remote). 

Therefore, you can also use your ESP32 to create your own remote control that allows you to interact 
with your TV or your stereo. 

PWM 

Like the ESP8266, the ESP32 also supports the use of analog outputs using PWM. The big difference 
is in ESP32 it is possible to use up to 16 pins as PWM outputs where ESP8266 only supports 8 and 
Arduino UNO board that only supports 6. 

PWM pins: 

All the PWM pins are indicated with the below symbol in the ESP32 Pinout Diagram above. 

 

19



 

 
3.2.6 How to select an ESP32 development board? 

Before selecting an ESP32 development board, you need to take into account certain aspects: 

 Pin numbers and configuration: it is important to have access to the board’s pinout in 
order to make correct use of it. 

 Serial -USB interface and voltage regulator: These two features are found in practically 
all development boards. These are the ones that allow the board to be connected directly to 
the computer to be energized and programmed. 

 Battery connector: if you are thinking of venturing into low-consumption systems with 
batteries, you can opt for boards that already include battery connectors. 

 Extra functions: many development boards for ESP32 come with extra features such as 
cameras, OLED displays, LoRa modules, etc. 

 

3.3 Installing ESP32 Add-on in Arduino IDE 

To install the ESP32 board in your Arduino IDE, follow these next instructions: 

1. In your Arduino IDE, go to File> Preferences 

 

2. Enter the following into the “Additional Board Manager URLs” field: 

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json 

Then, click the “OK” button: 

20



 

3. Open the Boards Manager. Go to Tools > Board > Boards Manager… 

 

4. Search for ESP32 and press install button for the “ESP32 by Espressif Systems“: 

21



 

5. That’s it. It should be installed after a few seconds. 

 

 

3.4  Stepper Motor Basics 

A stepper motor is an electric motor whose main feature is that its shaft rotates by performing steps, 
that is, by moving by a fixed number of degrees. This feature is obtained thanks to the internal 
structure of the motor, and allows to know the exact angular position of the shaft by simply 
counting how may steps have been performed, with no need for a sensor. This feature also makes it 
fit for a wide range of applications. 

  

 

 

22



3.4.1  Stepper Motor Working Principles 

As all with electric motors, stepper motors have a stationary part (the stator) and a moving part (the 
rotor). On the stator, there are teeth on which coils are wired, while the rotor is either a permanent 
magnet or a variable reluctance iron core. We will dive deeper into the different rotor structures 
later. Figure 5 shows a drawing representing the section of the motor is shown, where the rotor is a 
variable-reluctance iron core. 

 

Figure 5: Cross-Section of a Stepper Motor 

The basic working principle of the stepper motor is the following: By energizing one or more of the 
stator phases, a magnetic field is generated by the current flowing in the coil and the rotor aligns 
with this field. By supplying different phases in sequence, the rotor can be rotated by a specific 
amount to reach the desired final position. Figure 6 shows a representation of the working principle. 
At the beginning, coil A is energized and the rotor is aligned with the magnetic field it produces. 
When coil B is energized, the rotor rotates clockwise by 60° to align with the new magnetic field. 
The same happens when coil C is energized. In the pictures, the colors of the stator teeth indicate 
the direction of the magnetic field generated by the stator winding. 

 

Figure 6: Stepper Motor Steps 

3.4.2  Stepper Motor Control 

We have seen previously that the motor coils need to be energized, in a specific sequence, to 
generate the magnetic field with which the rotor is going to align. Several devices are used to 
supply the necessary voltage to the coils, and thus allow the motor to function properly. Starting 
from the devices that are closer to the motor we have: 

23



 A transistor bridge is the device physically controlling the electrical connection of the motor 
coils. Transistors can be seen as electrically controlled interrupters, which, when closed allow 
the connection of a coil to the electrical supply and thus the flow of current in the coil. One 
transistor bridge is needed for each motor phase. 

 A pre-driver is a device that controls the activation of the transistors, providing the required 
voltage and current, it is in turn controlled by an MCU. 

 An MCU is a microcontroller unit, which is usually programmed by the motor user and 
generates specific signals for the pre-driver to obtain the desired motor behavior. 

  

Figure 7 shows a simple representation of a stepper motor control scheme. The pre-driver and the 
transistor bridge may be contained in a single device, called a driver. 

 

Figure 7: Motor Control Basic Scheme 

3.4.3 Stepper Motor Driver Types 

There are different stepper motor drivers available on the market, which showcase different 
features for specific applications. The most important characteristics include the input interface. 
The most common options are: 

 Step/Direction – By sending a pulse on the Step pin, the driver changes its output such that the 
motor will perform a step, the direction of which is determined by the level on the Direction 
pin. 

 Phase/Enable – For each stator winding phase, Phase determines the current direction and 
triggers Enable if the phase is energized. 

 PWM – Directly controls the gate signals of the low-side and high-side FETs. 

Another important feature of a stepper motor driver is if it is only able to control the voltage across the 
winding, or also the current flowing through it: 

  

24



 With voltage control, the driver only regulates the voltage across the winding. The torque 
developed and the speed with which the steps are executed only depend on motor and load 
characteristics. 

 Current control drivers are more advanced, as they regulate the current flowing through the 
active coil in order to have better control over the torque produced, and thus the dynamic 
behavior of the whole system. 

Unipolar/Bipolar Motors 

Another feature of the motor that also affects control is the arrangement of the stator coils that 
determine how the current direction is changed. To achieve the motion of the rotor, it is necessary not 
only to energize the coils, but also to control the direction of the current, which determines the 
direction of the magnetic field generated by the coil itself. 

  3.4.4 Stepper Motor Uses and Applications 

Due to their properties, stepper motors are used in many applications where a simple position control 
and the ability to hold a position are needed, including: 

 3D printing equipment 
 Textile machines 
 Printing presses 
 Gaming machines 
 Medical imaging machinery 
 Small robotics 
 CNC milling machines 
 Welding equipment 

While these applications are the most common, they’re a fraction of what stepper motors can be used 
for. Generally speaking, any application that requires highly accurate positioning, speed control, and 
low speed torque can benefit from the use of stepper motors. 

 
3.5  A4988 Stepper Motor Driver Chip 

At the heart of the module is a Micro stepping Driver from Allegro – A4988. It’s small in stature 
(only 0.8″ × 0.6″) but still packs a punch. 

 

Figure 8: Stepper Motor Driver A4988 

25



The A4988 stepper motor driver has output drive capacity of up to 35 V and ± 2A and lets you control 
one bipolar stepper motor at up to 2A output current per coil like NEMA 17. 

The driver has built-in translator for easy operation. This reduces the number of control pins to just 2, 
one for controlling the steps and other for controlling spinning direction. 

The driver offers 5 different step resolutions viz. full-step, half-step, quarter-step, eighth-step, and 

sixteenth-step. 

3.5.1 A4988 Motor Driver Pinout 

The A4988 driver has total 16 pins that interface it to the outside world. The connections are as 
follows: 

 

Figure 9: A4988 pin diagram 

       Let’s familiarize ourselves with all the pins one by one. 

3.5.2 Power Connection Pins 

The A4988 actually requires two power supply connections. 

 

Figure 10: A4988 power pins 

 

26



VDD & GND is used for driving the internal logic circuitry which can be 3V to 5.5 V. Whereas, 

VMOT & GND supplies power for the motor which can be 8V to 35 V. 

According to datasheet, the motor supply requires appropriate decoupling capacitor close to the board, 
capable of sustaining 4A. In our project the stepper motor is connected to 12 V. We use 100 µF 
capacitor between VMOT & GND.  

3.5.3 Micro-step Selection Pins 

The A4988 driver allows micro stepping by allowing intermediate step locations. This is achieved by 
energizing the coils with intermediate current levels. 

For example, if you choose to drive NEMA 17 having 1.8° or 200 steps per revolution in quarter-step 
mode, the motor will give 800 micro steps per revolution. 

 

Figure 11: A4988 micro-step pin selection 

The A4988 driver has three step size(resolution) selector inputs viz. MS1, MS2 & MS3. By setting 
appropriate logic levels to these pins, we can set the motors to one of the five step resolutions. 

Table 2: Micro-stepping selection 

MS1 MS2 MS3 Micro-step Resolution 
Low Low Low Full step 
High Low Low Half step 
Low High Low Quarter step 
High High Low Eighth step 
High High High Sixteenth step 

 

These three micro step selection pins are pulled LOW by internal pull-down resistors, so if we leave 
them disconnected, the motor will operate in full step mode. 

3.5.4 Control Input Pins 

The A4988 has two control inputs viz. STEP and DIR. 

27



 

Figure 12: A4988 control pins 

STEP input controls the micro-steps of the motor. Each HIGH pulse sent to this pin steps the motor 
by number of micro-steps set by Micro-step Selection Pins. The faster the pulses, the faster the motor 
will rotate. 

DIR input controls the spinning direction of the motor. Pulling it HIGH drives the motor clockwise 
and pulling it LOW drives the motor counterclockwise. 

3.5.5 Pins for Controlling Power States 

The A4988 has three different inputs for controlling its power states viz. EN, RST, and SLP. 

 

Figure 13: A4988 power state control pins 

EN Pin is active low input, when pulled LOW (logic 0) the A4988 driver is enabled. By default, 
this pin is pulled low so the driver is always enabled, unless you pull it HIGH. 
SLP Pin is active low input. Meaning, pulling this pin LOW puts the driver in sleep mode, 
minimizing the power consumption. You can invoke this especially when the motor is not in use to 
conserve power. 
RST is also an active low input. When pulled LOW, all STEP inputs are ignored, until you pull it 
HIGH. It also resets the driver by setting the internal translator to a predefined home state. Home 
state is basically the initial position from where the motor starts and it’s different depending upon 
the micro-step resolution. 

 

 

28



3.5.6 Output Pins 

The A4988 motor driver’s output channels are broken out to the edge of the module with 1B, 1A, 

2A & 2B pins. 

 

Figure 14: A4988 output pins 

You can connect any bipolar stepper motor having voltages between 8V to 35 V to these pins. 

Each output pin on the module can deliver up to 2A to the motor. However, the amount of current 
supplied to the motor depends on system’s power supply, cooling system & current limiting setting. 

 

3.6 Interface OLED Graphic Display Module with ESP32 

OLED Display: 

The OLED display module breaks out a small monochrome OLED display. It’s 128 pixels wide and 
64 pixels tall, measuring 0.96″ across. It’s micro, but it still packs a punch – the OLED display is 
very readable due to the high contrast, and you can fit a deceivingly large number of graphics on 
there.  
3.6.1 Pin Description 

 

  

 

 

 

 

 

Figure 15: 128x64 I2C based OLED module. 

VCC: This is the power pin for the module. A supply of 3.3V or 5V can be provided to this pin to 

power the display. 

29



GND: This is the ground pin for the module. 

SCL and SDA: These are the serial clock and serial data pins for I2C Interface. 

3.6.2 Wiring OLED display module to ESP32 

Connections are fairly simple. Start by connecting VCC pin to the 3.3V output on the ESP32 
and connect GND to ground. 

Next, Connect the SCL pin to the I2C clock D22 pin on your ESP32 and connect the SDA pin 
to the I2C data D21 pin on ESP32. Refer to ESP32 Pinout. 

The following diagram shows you how to wire everything. 

 

Figure 16: Wiring Connections for OLED Display Module with ESP32 

    3.7 Overview of the Project: 

 

Figure 17: Overview of the project 

This project is the perfect example of sequential process. Without the use of the any sensors the 
bottles are filling perfectly. The bottles are placed in the predefine places in the rotating platform 

30



with the help of some cylindrical piece of plastic. These piece of plastic holds the bottles in the 
places securely. The rotating platform rotates with the help of the stepper motor. The motor moves 
the platform in perfect 600 in every step and ensure that the bottles are placed exactly bellow the 
water pipe. This process repeats until all the bottles filled up. The whole process is monitored are 
displayed in the built in OLED display. Also, a buzzer is attached in the board to give some audio 
feedback.  

    3.8 Circuit Diagram: 

 

Figure 18: Circuit diagram of the developed prototype 

 

 

31



 

 

 

 

CHAPTER 4 

(Hardware Modeling) 
  

 
 

32



4.1 Main features of the prototype 

The features of the developed prototype are: 

 Automatic and accurate bottle filling 

 Can be used with any type of liquid  

 Reduce Man-Dependency 

 Real time status display in the OLED 

 Extension for relay board connection 

 Buzzer connected for audio feedback 

 Single power supply and on-board voltage regulator 

 Micro stepping option for smooth movement of the motor 

4.2 Photographs of the main controller board 

 

 

Figure 19: Main Controller and Relay board  

33



4.3 Step by step operation of the prototype 

1. Connect the DC adapter (12V, 1A) to the DC socket 

2. Voltage Regulator (LM7805) provides 5 Volt input for ESP32 And Motor 

Driver(A4988)  

3. The Pump is fed with 5V DC 

4. First the Stepper Motor will run in clock wise direction until the limit switch is triggered 

5. After the triggering of the limit switch the initial position is determine 

6. The Pump will be on for a calculated time to fill the bottles 

7. Next the stepper motor will rotate the supporting platform for 60 degrees and pump will 

fill the bottles and OLED will display the status of the filled bottles 

8. After filling all the bottles, the OLED displayed the final message and the whole system 

will stop. 

4.4 Components required 

Table 3: Component listing 

Sl. 
No. Component Qtn 

1. ESP32 1 
2. NEMA 17 Stepper Motor 1 
3. A4988 Stepper motor driver 1 
4. Static Relay (5 volt) 1 
5. 0.96” OLED (I2C) 1 
6. CK100 transistor (NPN)  1 
7. General blank PCB (KS 100) 1 
8. 5 mm LED 1 
9. Berg terminals 14 

10. Small DC Pump (3-6 V) 1 

11. 8mm zinc alloy pillow block flange bearing 2 

12. GT2 timing pully (20 tooth, 5mm) 1 

13. GT2 timing pully (40 tooth, 8mm) 1 

14. GT2 timing belt (280 mm long, 6mm width) 1 

15. 8mm support rod 20 cm 
16. Limit switch 1 
17. Push button 1 
18. BC547 transistor 1 
19 Male PCB Header Connector 1 
20. 3mm water pipe 3 ft 

 

 

34



4.5 Hardware interfacing  

4.5.1 Relay Driver interfacing with ESP32 

 

Figure 20: Relay interfacing with ESP32 
 

The ESp32 microcontroller runs in 3.3-volt logic. Its GPIO pins maximum give 3.3 volt as logic 
high level and maximum 40 mA of current. Here we need a voltage driven relay driver instead of 
current driven. CK100 is a NPN Silicon Planar Transistors. The esp32 GPIO output pin is connected 
to the base of the transistor through 1k resistor, collector is connected to the +5 volt and emitter is 
connected to the ground.  For a ‘0’ from microcontroller the corresponding relay is turned off and a 
‘1’ from microcontroller is turned on the relay. For free wheeling a diode needs to be connected 
parallel to the relay coil with reverse bias as shown in the figure 20. 

4.5.2 A4988 Interfacing with ESP32 

To connect the ESP32 board with the stepper motor and driver we will use all the pins of the driver 
except for the enable pin and the micro step resolution selection pins. Connect the output pins of the 
driver with the respective motor pins. Connect the STEP pin and the DIR pin with any appropriate 
GPIO pin of ESP32 board. We have used GPIO12 to connect with DIR and GPIO14 to connect with 
STEP. As we want to operate our stepper mode in full mode hence, we will leave the MS1, MS2 and 
MS3 pins as they are. The RST pin will be connected with SLP so that the driver is enabled. 
Moreover, the VCC and GND pins will be connected with Vin and GND pin from ESP32 
respectively. The VMOT will be connected with an external power supply ranging between 8-35V. 
We are using 12V external power supply. Make sure the GND pins are connected with the 
respective common grounds. 
 

 

35



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: A4988 interfacing with ESP32 
 

4.5.3 ESP32 OLED Display with Arduino IDE 

The combination of OLED with ESP32 is so popular that there are some boards of ESP32 with the 
OLED integrated. We'll, however, assume that you will be using a separate OLED module with your 
ESP32 board. If you have an OLED module, it perhaps looks like the image below. 

 

 

 

 

 

 

 

 

 

The OLED (Organic Light Emitting Diode) display that we’ll use in this tutorial is the SSD1306 
model: a monocolor, 0.96-inch display with 128×64 pixels as shown in the above figure. 

The OLED display doesn’t require backlight, which results in a very nice contrast in dark 
environments. Additionally, its pixels consume energy only when they are on, so the OLED 
display consumes less power when compared to other displays. 

The model we’re using has four pins and communicates with any microcontroller using I2C 
communication protocol. There are models that come with an extra RESET pin or that 
communicate using SPI communication protocol. 

Figure 22: 0.96" OLED I2C module 

36



OLED Display SSD1306 Pin Wiring 

Because the OLED display uses I2C communication protocol, wiring is very simple. Use the 
following table as a reference. 

Table 4: OLED interfacing with ESP32 

Pin ESP32 

Vin 3.3V 

GND GND 

SCL GPIO 22 

SDA GPIO 21 

 

Alternatively, it can follow the next schematic diagram to wire the ESP32 to the OLED display. 

 

In this example, we’re using I2C communication protocol. The most suitable pins for I2C 
communication in the ESP32 are GPIO 22 (SCL) and GPIO 21 (SDA). 

If you’re using an OLED display with SPI communication protocol, use the following GPIOs. 

 GPIO 18: CLK 
 GPIO 19: MISO 
 GPIO 23: MOSI 
 GPIO 5: CS 

Installing SSD1306 OLED Library – ESP32 

There are several libraries available to control the OLED display with the ESP32. In this project 
we’ll use two Adafruit libraries: Adafruit_SSD1306 library and Adafruit_GFX library. 

Follow the next steps to install those libraries. 

1. Open your Arduino IDE and go to Sketch > Include Library > Manage Libraries. The 
Library Manager should open. 

37



2. Type “SSD1306” in the search box and install the SSD1306 library from Adafruit. 

 

3. After installing the SSD1306 library from Adafruit, type “GFX” in the search box and install the 
library. 

 

4. After installing the libraries, restart your Arduino IDE. 

Testing OLED Display with ESP32 

After wiring the OLED display to the ESP32 and installing all required libraries, you can use one 
example from the library to see if everything is working properly. 

In your Arduino IDE, go to File > Examples > Adafruit SSD1306 and select the example for the 
display you’re using. 

38



 

Write Text – OLED Display 

The Adafruit library for the OLED display comes with several functions to write text. In this 
section, you’ll learn how to write and scroll text using the library functions. 

“Hello, world!” OLED Display 

The following sketch displays Hello, world! message in the OLED display. 

#include <Wire.h> 
#include <Adafruit_GFX.h> 
#include <Adafruit_SSD1306.h> 
 
#define SCREEN_WIDTH 128 // OLED display width, in pixels 
#define SCREEN_HEIGHT 64 // OLED display height, in pixels 
 
// Declaration for an SSD1306 display connected to I2C (SDA, SCL pins) 
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, -1); 
 
void setup() { 

39



  Serial.begin(115200); 
  if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Address 0x3D for 128x64 
    Serial.println(F("SSD1306 allocation failed")); 
    for(;;); 
  } 
  delay(2000); 
  display.clearDisplay(); 
 
  display.setTextSize(1); 
  display.setTextColor(WHITE); 
  display.setCursor(0, 10); 
  // Display static text 
  display.println("Hello, world!"); 
  display.display();  
} 
 
void loop() { 
   
} 
 

After uploading the code, this is what you’ll get in your OLED: 

 

Let’s take a quick look on how the code works. 

Importing libraries 

First, you need to import the necessary libraries. The Wire library to use I2C and the Adafruit 
libraries to write to the display: Adafruit_GFX and Adafruit_SSD1306. 

#include <Wire.h> 
#include <Adafruit_GFX.h> 
#include <Adafruit_SSD1306.h> 

40



Initialize the OLED display 

Then, you define your OLED width and height. In this example, we’re using a 128×64 OLED 
display. If you’re using other sizes, you can change that in the SCREEN_WIDTH, 
and SCREEN_HEIGHT variables. 

#define SCREEN_WIDTH 128 // OLED display width, in pixels 
#define SCREEN_HEIGHT 64 // OLED display height, in pixels 

Then, initialize a display object with the width and height defined earlier with I2C 
communication protocol (&Wire). 

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, -1); 

The (-1) parameter means that your OLED display doesn’t have a RESET pin. If your OLED 
display does have a RESET pin, it should be connected to a GPIO. In that case, you should pass 
the GPIO number as a parameter. 

In the setup(), initialize the Serial Monitor at a baud raute of 115200 for debugging purposes. 

Serial.begin(115200); 
Initialize the OLED display with the begin() method as follows: 
if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {  
  Serial.println("SSD1306 allocation failed"); 
  for(;;); // Don't proceed, loop forever 
} 

This snippet also prints a message on the Serial Monitor, in case we’re not able to connect to the 
display. 

Serial.println("SSD1306 allocation failed"); 

In case you’re using a different OLED display, you may need to change the OLED address. In 
our case, the address is 0x3C. 

if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {  

After initializing the display, add a two second delay, so that the OLED has enough time to 
initialize before writing text: 

delay(2000); 

Clear display, set font size, color and write text 

After initializing the display, clear the display buffer with the clearDisplay () method: 

display.clearDisplay(); 

41



Before writing text, you need to set the text size, color and where the text will be displayed in the 
OLED. 

Set the font size using the setTextSize() method: 

display.setTextSize(1);              

Set the font color with the setTextColor() method: 

display.setTextColor(WHITE);         

WHITE sets white font and black background. 

Define the position where the text starts using the setCursor(x,y) method. In this case, we’re 
setting the text to start at the (0,0) coordinates – at the top left corner. 

display.setCursor(0,0);              

Finally, you can send the text to the display using the println() method, as follows: 

display.println("Hello, world!"); 

Then, you need to call the display() method to actually display the text on the screen. 

display.display(); 

Draw Shapes in the OLED Display 

The Adafruit OLED library provides useful methods to draw pixels, lines and shapes. Let’s take a 
quick look at those methods. 

Draw a pixel 

 

To draw a pixel in the OLED display, you can use the drawPixel(x, y, color) method that accepts 
as arguments the x and y coordinates where the pixel appears, and color. For example: 

display.drawPixel(64, 32, WHITE); 

42



Draw a line 

 

 

Use the drawLine(x1, y1, x2, y2, color) method to create a line. The (x1, y1) coordinates indicate 
the start of the line, and the (x2, y2) coordinates indicates where the line ends. For example: 

display.drawLine(0, 0, 127, 20, WHITE); 

Draw a rectangle 

 

The drawRect(x, y, width, height, color) provides an easy way to draw a rectangle. The (x, y) 
coordinates indicate the top left corner of the rectangle. Then, you need to specify the width, height 
and color: 

display.drawRect(10, 10, 50, 30, WHITE); 

You can use the fillRect(x, y, width, height, color) to draw a filled rectangle. This method accepts 
the same arguments as drawRect(). 

43



 

The library also provides methods to displays rectangles with round 
corners: drawRoundRect() and fillRoundRect(). These methods accepts the same arguments as 
previous methods plus the radius of the corner. For example: 

display.drawRoundRect(10, 10, 30, 50, 2, WHITE); 

 

Or a filled round rectangle: 

display.fillRoundRect(10, 10, 30, 50, 2, WHITE); 

 

 

Draw a circle 

 

44



To draw a circle use the drawCircle(x, y, radius, color) method. The (x,y) coordinates indicate the 
center of the circle. You should also pass the radius as an argument. For example: 

display.drawCircle(64, 32, 10, WHITE); 

In the same way, to build a filled circle, use the fillCircle() method with the same arguments: 

display.fillCircle(64, 32, 10, WHITE); 

 

 

Draw a triangle 

 

Use the the drawTriangle(x1, y1, x2, y2, x3, y3, color) method to build a triangle. This method 
accepts as arguments the coordinates of each corner and the color. 

display.drawTriangle(10, 10, 55, 20, 5, 40, WHITE); 

Use the fillTriangle() method to draw a filled triangle. 

display.fillTriangle(10, 10, 55, 20, 5, 40, WHITE); 

 

 

 

45



 
 

 

 

 

 

CHAPTER 5 
(Logic & Operation) 

  

 
 
 

46



 5.1  INTRODUCTION 

After assembling the system, what remains is to observe its operation and efficiency of the 
system. The total system is divided in several sub systems, like  

 ESP32 Section 
 Stepper Motor Section 
 OLED Section 
 Relay Section 

The operation of the whole circuit is depending on every sections performance. 

5.2  Flow Chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Flow chart of the program 

47



5.3 Principle & Operations 

This project is the perfect example of sequential process. Without the use of the any sensors the 
bottles are filling perfectly. The bottles are placed in the predefine places in the rotating platform 
with the help of some cylindrical piece of plastic. These piece of plastic holds the bottles in the 
places securely. The rotating platform rotates with the help of the stepper motor. The motor moves 
the platform in perfect 600 in every step and ensure that the bottles are placed exactly bellow the 
water pipe. This process repeats until all the bottles filled up. The whole process is monitored are 
displayed in the built in OLED display. Also, a buzzer is attached in the board to give some audio 
feedback.  

5.3.1 Advantages of the ESP32 
 

 Low cost: The ESP32 is less costly than any other IOT based Devices. Because the wifi 
module which is used in it is of lowest cost.  

 Network API: ESP32 has easily configurable network API. 

 Integrated Wifi Module: It is an easily accessible wifi module. 

 
5.3.2 Disadvantages 

 Less documentation: There is little documentation available regarding ESP32 so for 
understanding the operation, GPIO, ADC there is a little problem.  

 3.3-volt operation: Unlike Arduino, ESP32 works on 3.3-volt logic. So, interfacing 
different sensors and component to the ESP32 special caution must be given.  

 
5.4 Cost estimation of the project 

In this project we have used the cheapest IOT module NODE MCU. So the total cost 
of the project is reduced compare to the other IOT project. The total estimated cost of 
the complete project is listed in table 3. 
 

Table 5: Costing of the projects 

Sl. 
No. Component Price 

1. ESP32 400 
2. NEMA 17 Stepper Motor 750 
3. A4988 Stepper motor driver 200 
4. Static Relay (5 volt) 25 
5. 0.96” OLED (I2C) 200 
6. CK100 transistor (NPN)  10 
7. General blank PCB (KS 100) 40 
8. 5 mm LED 2 
9. Berg terminals 15 

10. Small DC Pump (3-6 V) 55 

11. 8mm zinc alloy pillow block flange bearing 318 

48



12. GT2 timing pully (20 tooth, 5mm) 160 

13. GT2 timing pully (40 tooth, 8mm) 190 

14. GT2 timing belt (280 mm long, 6mm width) 149 

15. 8mm support rod 90 
16. Limit switch 35 
17. Push button 1 
18. BC547 transistor 1 
19 Male PCB Header Connector 20 
20. 3mm water pipe 10 

Total 2671/- 

 

5.5 Photographs of the prototype 
 

 
 

Figure 24: Main Controller Board 

 

49



 

Figure 25: The Prototype 

50



 

Figure 26: Pully and driving belt Figure 27: Complete setup 

Figure 28: Limit switch 
Figure 29: Pump and driver board 

51



 

 

 

 

Chapter 6 
(Conclusion & Future Scope) 

 
 

 

 

52



6.1 Conclusion 

Here we developed a prototype which automatically fills a number of bottles with the help of a 
micro-controller. It will help in reducing human effort and error. Our circuit consists of ESP32 
as a main controller, OLED as a display device, Stepper motor as a main driving gear, Pump to 
fill the liquid in the bottle. The prototype worked satisfactorily.  

6.2 Result 

The experimental model was made according to the circuit diagram and the results were as 
expected. The OLED displays properly the status of the operation at each step. After all the 
bottles are filled the circuit stops. Here special attention must be taken to design the relay 
driver. During the testing it was found that the DC pump creates much RFI (Radio Frequency 
Interference) which affect the stepper motor driver A4988. When the pump starts the driver 
malfunctioned and the stepper motor behaves strangely. One noise filter circuit also developed 
to reduce the interference.  

 
6.3 Future work 

In this developed prototype the bottles need to placed manually and after the filling user need to 
replace the bottle manually. In our future work we try to develop a system which fully automatically 
filling the bottles. we will also try to use IoT and connect with our module, then it can be controlled 
with the help of a remote device, which will make it to stop the circuit remotely in case of any error. 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

53



 

         

 
 

Chapter 7 
(References) 

 
 

54



[1] Deepika Saikia, Prajakta Powar, Animesh Gaurav “Automatic Bottle Filling System”, International 
Research Journal of Engineering and Technology (IRJET), e-ISSN: 2395-0056, p-ISSN: 2395-
0072 
 

[2] Ashwini P. Somawanshi, Supriya B. Asutkar, Sachin A. More “Automatic Bottle Filling Using 
Microcontroller Volume Correction”, International Journal of Engineering Research & Technology 
(IJERT), ISSN: 2278-0181, Vol. 2 Issue 3, March – 2013 

 

[3] Aniruddh Guha, Adarsh Ganveer, Manjari Kumari, Ajay Singh Rajput, “AUTOMATIC BOTTLE 
FILLING MACHINE”, International Research Journal of Engineering and Technology (IRJET), e-
ISSN: 2395-0056, p-ISSN: 2395-0072 

 

[4] J.Dharanidharan, R. Puviarasi, “AUTOMATIC BOTTLE FILLING MACHINE”, International 
Conference on Recent Trends in Computing, Communication and Networking Technologies 
(ICRTCCNT’19) Oct 18-19, 2019, Kings Engineering College, Chennai, TamilNadu, India. 

 

[5] Arthur Pius Santiago [2010]: Insecticide Bottle Filling and Capping machines in De La Salle 
University. The 11th Asia pacific Industrial Engineering and Management Systems Conference. 
The 14th Asia Pacific Regional Meeting of the International Foundation for production Research. 

 

[6] Samarth Nainani, Akshata Rupawate, Shoaib Sayyed, Siddharth Poojary, Vaishali Bodhale, 
“AUTOMATIC BOTTLE FILLING SYSTEM USING ARDUINO UNO”, International Research 
Journal of Modernization in Engineering Technology and Science, Volume:03/Issue:04/April-
2021, e-ISSN: 2582-5208 

 

[7] Kiran Chaudhari, Aaqib Momin, Ritu Magare, Omkar More, Aniket Kantale, “Automated Filling 
Machine”, International Research Journal of Engineering and Technology (IRJET), e-ISSN: 2395-
0056, p-ISSN: 2395-0072. 

 

[8] Bipin Mashilkar, Pallavi Khaire and Girish Dalve, “Automated Bottle Filling System,” 
International Research Journal of Engineering and Technology (IRJET), e-ISSN: 2395-0056, p-
ISSN: 2395-0072; Volume 02, Issue 07; October 2015. 

 

[9] Nisarg A Solanki, Pratik G Raj, Saumil P Patel, Charmish D Rajput, “Automatic Liquid Filling 
Machine”, International Journal of Engineering Research & Technology. 

 

 

55



 

 

 

 

Appendix A 
(Hardware description) 

  
56



Transformer less AC to DC power supply circuit using 
dropping capacitor 

Production of low voltage DC power supply from AC power is the most important problem faced by 
many electronics developers and hobbyists. The straight forward technique is the use of a step-down 
transformer to reduce the 230 V or 110V AC to a preferred level of low voltage AC. But SMPS 
power supply comes with the most appropriate method to create a low-cost power supply by 
avoiding the use of bulky transformer. This circuit is so simple and it uses a voltage dropping 
capacitor in series with the phase line. Transformer less power supply is also called as capacitor 
power supply. It can generate 5V, 6V, 12V 150mA from 230V or 110V AC by using appropriate 
zener diodes. 

 

Figure 30: Transformer less SMPS 5-volt power supply 

Working of Transformer less capacitor power supply 

 This transformer less power supply circuit is also named as capacitor power supply since it 
uses a special type of AC capacitor in series with the main power line. 

 A common capacitor will not do the work because the mains spikes will generate holes in the 
dielectric and the capacitor will be cracked by passing of current from the mains through the 
capacitor. 

 X rated capacitor suitable for the use in AC mains is vital for reducing AC voltage. 

 A X rated dropping capacitor is intended for 250V, 400V, 600V AC. Higher voltage versions 
are also obtainable. The dropping capacitor is non polarized so that it can be connected any 
way in the circuit. 

 The 470kΩ resistor is a bleeder resistor that removes the stored current from the capacitor 
when the circuit is unplugged. It avoids the possibility of electric shock. 

 Reduced AC voltage is rectified by bridge rectifier circuit. We have already discussed about 
bridge rectifiers. Then the ripples are removed by the 1000µF capacitor. 

57



 This circuit provides 24 volts at 160 mA current at the output. This 24 volt DC can be 
regulated to necessary output voltage using an appropriate 1 watt or above zener diode. 

 Here we are using 6.2V zener. You can use any type of zener diode in order to get the required 
output voltage. 

Resistor       

 

Figure 31: Resistor 

Resistance is the opposition of a material to the current. It is measured in Ohms Ω. All conductors 
represent a certain amount of resistance, since no conductor is 100% efficient. To control the 
electron flow (current) in a predictable manner, we use resistors. Electronic circuits use calibrated 
lumped resistance to control the flow of current. Broadly speaking, resistor can be divided into two 
groups viz. fixed & adjustable (variable) resistors. In fixed resistors, the value is fixed & cannot be 
varied. In variable resistors, the resistance value can be varied by an adjuster knob. It can be divided 
into (a) Carbon composition (b) Wire wound (c) Special type. The most common type of resistors 
used in our projects is carbon type. The resistance value is normally indicated by color bands. Each 
resistance has four colors, one of the bands on either side will be gold or silver, this is called fourth 
band and indicates the tolerance, others three band will give the value of resistance (see table). For 
example, if a resistor has the following marking on it say red, violet, gold. Comparing these colored 
rings with the color code, its value is 27000 ohms or 27 kilo ohms and its tolerance is ±5%. Resistor 
comes in various sizes (Power rating). The bigger the size, the more power rating of 1/4 watts. The 
four-color rings on its body tells us the value of resistor value. 

Color Code of the resistor 

 

 

 

 

 

 

 

Figure 32: Color Code for resistance 

 

58



RELAY           

 

 

F

i

g

u

r

e 

 

 

 

 

 

 

Figure 33: 6-volt Cube Relay 

A relay is an electrically operated switch. Current flowing through the coil of the relay creates a 
magnetic field which attracts a lever and changes the switch contacts. The coil current can be on or 
off so relays have two switch positions and they are double throw (changeover) switches. 

The relay’s switch connections are usually labeled COM (POLE), NC and NO: 

COM/POLE= Common, NC and NO always connect to this, it is the moving part of the switch. 

NC = Normally Closed, COM/POLE is connected to this when the relay coil is not magnetized. 

NO = Normally Open, COM/POLE is connected to this when the relay coil is MAGNETIZED and 
vice versa. 

 

 

 

59



OLED 

An organic light-emitting diode (OLED) is a light-emitting diode (LED) in which 
the emissive electroluminescent layer is a film of organic compound that emits light in response to 
an electric current. This organic layer is situated between two electrodes; typically, at least one of 
these electrodes is transparent. OLEDs are used to create digital displays in devices such 
as television screens, computer monitors, portable systems such as smart phones, handheld game 
consoles and PDAs. A major area of research is the development of white OLED devices for use 
in solid-state lighting applications. 

 

Figure 34: 0.96” I2C OLED display module  

ESP32 

ESP32 is a series of low-cost, low-power system on a chip microcontrollers with integrated Wi-
Fi and dual-mode Bluetooth. The ESP32 series employs either a Tensilica Xtensa LX6 
microprocessor in both dual-core and single-core variations, Xtensa LX7 dual-core microprocessor 
or a single-core RISC-V microprocessor and includes built-in antenna switches, RF balun, power 
amplifier, low-noise receive amplifier, filters, and power-management modules. ESP32 is created 
and developed by Espressif Systems, a Shanghai-based Chinese company, and is manufactured 
by TSMC using their 40 nm process. It is a successor to the ESP8266 microcontroller. 

 

Figure 35: ESP 32 microcontroller 

 

 

60



Piezo buzzer 

 A buzzer or beeper is an audio signaling device, which may be mechanical, electromechanical, or 
piezoelectric. Typical uses of buzzers and beepers include alarm devices, timers and confirmation of 
user input such as a mouse click or keystroke. A piezoelectric element may be driven by an 
oscillating electronic circuit or other audio signal source, driven with a piezoelectric audio amplifier. 
Sounds commonly used to indicate that a button has been pressed are a click, a ring or a beep. 

 

Figure 36: Piezo Buzzer 

Blank PCB  

A printed circuit board (PCB) mechanically supports and electrically connects electronic 

components using conductive tracks, pads and other features etched from copper 

sheets laminated onto a non-conductive substrate. PCBs can be single sided (one copper 

layer), double sided (two copper layers) or multi-layer (outer and inner layers). Multi-layer PCBs 

allow for much higher component density. Conductors on different layers are connected with plated-

through holes called vias. Advanced PCBs may contain components - capacitors, resistors or active 

devices - embedded in the substrate. 

 

Figure 37: Blank glass epoxy PCB Board 

 

FR-4 glass epoxy is the primary insulating substrate upon which the vast majority of rigid PCBs are 

produced. A thin layer of copper foil is laminated to one or both sides of an FR-4 panel. Circuitry 

interconnections are etched into copper layers to produce printed circuit boards. Complex circuits are 

produced in multiple layers. 

Printed circuit boards are used in all but the simplest electronic products. Alternatives to PCBs 

include wire wrap and point-to-point construction. PCBs require the additional design effort to lay 

61



out the circuit, but manufacturing and assembly can be automated. Manufacturing circuits with 

PCBs is cheaper and faster than with other wiring methods as components are mounted and wired 

with one single part. Furthermore, operator wiring errors are eliminated. 

 
Stepper Motor  

A stepper motor, also known as step motor or stepping motor, is a brushless DC electric motor that 
divides a full rotation into a number of equal steps. The motor's position can be commanded to move 
and hold at one of these steps without any position sensor for feedback (an open-loop controller), as 
long as the motor is correctly sized to the application in respect to torque and speed. 

 

Figure 38: NEMA 17 stepper motor 

 

Stepper motors effectively have multiple "toothed" electromagnets arranged as a stator around a 
central rotor, a gear-shaped piece of iron. The electromagnets are energized by an external driver 
circuit or a micro controller. To make the motor shaft turn, first, one electromagnet is given power, 
which magnetically attracts the gear's teeth. When the gear's teeth are aligned to the first 
electromagnet, they are slightly offset from the next electromagnet. This means that when the next 
electromagnet is turned on and the first is turned off, the gear rotates slightly to align with the next 
one. From there the process is repeated. Each of those rotations is called a "step", with an integer 
number of steps making a full rotation. In that way, the motor can be turned by a precise angle. 

A4988 Stepper Motor Driver  

The A4988 is a complete micro-stepping motor driver with built-in translator for easy operation. It is 
designed to operate bipolar stepper motors in full-, half-, quarter-, eighth-, and sixteenth-step modes, 
with an output drive capacity of up to 35 V and ±2 A. The A4988 includes a fixed off-time current 
regulator which has the ability to operate in slow or mixed decay modes. 

 

Figure 39: A4988 Stepper motor driver 

62



 

 

 

 

 

 

 

 

 

 

 

 

Appendix B 
(Software coding) 

  

63



PROGRAM CODE: 
 

// Automatic Water bottle filling 
machine using NODE MCU/// 
 
#include <SPI.h> 
#include <Wire.h> 
#include <Adafruit_GFX.h> 
#include <Adafruit_SSD1306.h> 
 
#define OLED_RESET -1  //14 
Adafruit_SSD1306 
display(OLED_RESET); 
 
#if (SSD1306_LCDHEIGHT != 64) 
#error("Height incorrect, please fix 
Adafruit_SSD1306.h!"); 
#endif 
 
const int stepPin = 5; // A4988 step pin 
const int dirPin = 4; // A4988 direction 
pin 
int buttonPin;  // start button pin 
int r;  // Limit Switch 
int buzzer = 16;  // Buzzer Connected 
int m = 15; // Pump Connected 
 
void setup() 
{ 
  buttonPin = 13; //whatever pin your 
START button is plugged into 
  r = 12; //limit switch pin number. 
  pinMode(buttonPin, 
INPUT_PULLUP); 
  pinMode(r, INPUT); 
   
  
display.begin(SSD1306_SWITCHCA
PVCC, 0x3C); 
  delay(100); 
  display.clearDisplay(); 
 
  display.drawRoundRect(1, 1, 126, 62, 
4, WHITE); 
  display.setTextSize(1); 
  display.setTextColor(WHITE); 
  display.setCursor(17, 4); 
  // Display static text 
  display.println("Automatic Bottle"); 
  display.setCursor(20, 15); 
  display.println("Filling Machine"); 
  display.drawFastHLine(1, 27, 125, 
WHITE); 

 // display.startscrollright(0x00, 0x00); 
  display.setCursor(22, 37); 
  display.println("Press START to"); 
  display.setCursor(15, 47); 
  display.println("fill the bottles"); 
  display.display(); 
 
  // Set the two pins as Output 
  pinMode(stepPin, OUTPUT); 
  pinMode(dirPin, OUTPUT); 
  pinMode(buzzer, OUTPUT); 
  pinMode(m, OUTPUT); 
  digitalWrite(m, LOW);   // initially 
the pump switched off 
 
    while(digitalRead(r) ==LOW) 
    { 
       
        digitalWrite(dirPin, LOW); // 
Enable the motor to move in a 
particular direction 
        // Makes 200 pulses for making 
one full cycle rotation 
        for(int x=0; x<2000; x++) 
        digitalWrite(stepPin, HIGH); 
        delayMicroseconds(2000); 
        digitalWrite(stepPin, LOW); 
        delayMicroseconds(2000); 
 
        if(digitalRead(r) == HIGH) 
        break; 
    } 
    while(digitalRead(buttonPin) 
==LOW) 
    { 
        display.setTextColor(WHITE); 
        display.setCursor(22, 37); 
        display.println("Press START 
to"); 
        display.setCursor(15, 47); 
        display.println("fill the bottles"); 
        display.display(); 
        delay (500); 
        display.setTextColor(BLACK); 
        display.setCursor(22, 37); 
        display.println("Press START 
to"); 
        display.setCursor(15, 47); 
        display.println("fill the bottles"); 
        display.display(); 
        delay (500); 

64



       
 
        if(digitalRead(buttonPin) == 
HIGH) 
        break; 
    } 
    } 
 
void loop() 
    { 
     // Check button pressed, if so enter 
program condition (inside if statement) 
      if(digitalRead(buttonPin) 
==HIGH) //functions based off of 
button pulling input pin low 
      { 
        digitalWrite(buzzer,HIGH); 
        //tone(buzzer, 800); 
        delay(1000); 
        //tone(buzzer, 0); 
        digitalWrite(buzzer,LOW); 
 
        display.setTextColor(BLACK); 
        display.drawFastHLine(1, 27, 
125, WHITE); 
        // display.startscrollright(0x00, 
0x00); 
        display.setCursor(22, 37); 
        display.println("Press START 
to"); 
        display.setCursor(15, 47); 
        display.println("fill the bottles"); 
        display.setTextColor(WHITE); 
        display.setCursor(22, 37); 
        display.println("Start Filling"); 
        display.display(); 
 
         
        { 
          delay(500); 
          display.setCursor(30, 47); 
          display.println("Bottle 1/6"); 
          display.display(); 
          digitalWrite(m,HIGH); 
          delay(1850); 
          digitalWrite(m,LOW); 
          delay(1000); //one second delay 
          digitalWrite(buzzer,HIGH); 
          delay(200); 
          digitalWrite(buzzer,LOW); 
        } 
        { 

          digitalWrite(dirPin, HIGH); // 
Enables the motor to move in a 
particular direction 
          // Makes 200 pulses for making 
one full cycle rotation 
          for(int x=0; x<553; x++) 
          { 
            digitalWrite(stepPin, HIGH); 
            delayMicroseconds(2000);  
            digitalWrite(stepPin, LOW); 
            delayMicroseconds(2000);  
          } 
          delay(500); 
          display.setTextColor(BLACK); 
          display.setCursor(30, 47); 
          display.println("Bottle 1/6"); 
          display.display(); 
          display.setTextColor(WHITE); 
          display.setCursor(30, 47); 
          display.println("Bottle 2/6"); 
          display.display(); 
          digitalWrite(m,HIGH); 
          delay(1850); 
          digitalWrite(m,LOW); 
          delay(1000); //one second delay 
          digitalWrite(buzzer,HIGH); 
          delay(200); 
          digitalWrite(buzzer,LOW); 
        } 
        { 
          { 
          digitalWrite(dirPin, HIGH); // 
Enables the motor to move in a 
particular direction 
          // Makes 200 pulses for making 
one full cycle rotation 
          for(int x=0; x<545; x++) 
          { 
            digitalWrite(stepPin, HIGH); 
            delayMicroseconds(2000);  
            digitalWrite(stepPin, LOW); 
            delayMicroseconds(2000);  
          } 
          delay(500); 
          display.setTextColor(BLACK); 
          display.setCursor(30, 47); 
          display.println("Bottle 2/6"); 
          display.display(); 
          display.setTextColor(WHITE); 
          display.setCursor(30, 47); 
          display.println("Bottle 3/6"); 
          display.display(); 
          digitalWrite(m,HIGH); 
          delay(1850); 

65



          digitalWrite(m,LOW); 
          delay(1000); //one second delay 
          digitalWrite(buzzer,HIGH); 
          delay(200); 
          digitalWrite(buzzer,LOW); 
        } 
        { 
          digitalWrite(dirPin, HIGH); // 
Enables the motor to move in a 
particular direction 
          // Makes 200 pulses for making 
one full cycle rotation 
          for(int x=0; x<553; x++) 
          { 
            digitalWrite(stepPin, HIGH); 
            delayMicroseconds(2000);  
            digitalWrite(stepPin, LOW); 
            delayMicroseconds(2000);  
          } 
          delay(500); 
          display.setTextColor(BLACK); 
          display.setCursor(30, 47); 
          display.println("Bottle 3/6"); 
          display.display(); 
          display.setTextColor(WHITE); 
          display.setCursor(30, 47); 
          display.println("Bottle 4/6"); 
          display.display(); 
          digitalWrite(m,HIGH); 
          delay(1850); 
          digitalWrite(m,LOW); 
          delay(1000); //one second delay 
          digitalWrite(buzzer,HIGH); 
          delay(200); 
          digitalWrite(buzzer,LOW); 
        } 
        { 
          digitalWrite(dirPin, HIGH); // 
Enables the motor to move in a 
particular direction 
          // Makes 200 pulses for making 
one full cycle rotation 
          for(int x=0; x<510; x++) 
          { 
            digitalWrite(stepPin, HIGH); 
            delayMicroseconds(2000);  
            digitalWrite(stepPin, LOW); 
            delayMicroseconds(2000);  
          } 
          delay(500); 
          display.setTextColor(BLACK); 
          display.setCursor(30, 47); 
          display.println("Bottle 4/6"); 
          display.display(); 

          display.setTextColor(WHITE); 
          display.setCursor(30, 47); 
          display.println("Bottle 5/6"); 
          display.display(); 
          digitalWrite(m,HIGH); 
          delay(1850); 
          digitalWrite(m,LOW); 
          delay(1000); //one second delay 
          digitalWrite(buzzer,HIGH); 
          delay(200); 
          digitalWrite(buzzer,LOW); 
        } 
        { 
          digitalWrite(dirPin, HIGH); // 
Enables the motor to move in a 
particular direction 
          // Makes 200 pulses for making 
one full cycle rotation 
          for(int x=0; x<510; x++) 
          { 
            digitalWrite(stepPin, HIGH); 
            delayMicroseconds(2000);  
            digitalWrite(stepPin, LOW); 
            delayMicroseconds(2000);  
          } 
          delay(500); 
          display.setTextColor(BLACK); 
          display.setCursor(30, 47); 
          display.println("Bottle 5/6"); 
          display.display(); 
          display.setTextColor(WHITE); 
          display.setCursor(30, 47); 
          display.println("Bottle 6/6"); 
          display.display(); 
          digitalWrite(m,HIGH); 
          delay(1850); 
          digitalWrite(m,LOW); 
          delay(1000); //one second delay 
          digitalWrite(buzzer,HIGH);      
// at the end buzzer bips 3 times 
          delay(200); 
          digitalWrite(buzzer,LOW); 
          delay(200); 
          digitalWrite(buzzer,HIGH); 
          delay(200); 
          digitalWrite(buzzer,LOW); 
          delay(200); 
          digitalWrite(buzzer,HIGH); 
          delay(200); 
          digitalWrite(buzzer,LOW); 
        } 
       { 
           
          delay(500); 

66



          display.setTextColor(BLACK); 
          display.setCursor(22, 37); 
          display.println("Start Filling"); 
          display.setCursor(30, 47); 
          display.println("Bottle 6/6"); 
          display.display(); 
          display.setTextColor(WHITE); 
          display.setCursor(35, 37); 
          display.println("Job Done"); 

          display.setCursor(10, 47); 
          display.println("Replace the 
Bottles"); 
          display.display(); 
          delay (2000); 
         } 
       } 
     } 
 } 

 

 
 

 

 

 

 

67



 

 

 

 

 

 

Appendix C 
(Data sheets) 

 

68



ESP32-WROOM-32 (ESP-WROOM-32)

Datasheet

Version 2.4

Espressif Systems



1. OVERVIEW

1. Overview

ESP32-WROOM-32 (ESP-WROOM-32) is a powerful, generic Wi-Fi+BT+BLE MCU module that targets a wide

variety of applications, ranging from low-power sensor networks to the most demanding tasks, such as voice

encoding, music streaming and MP3 decoding.

At the core of this module is the ESP32-D0WDQ6 chip*. The chip embedded is designed to be scalable and

adaptive. There are two CPU cores that can be individually controlled, and the clock frequency is adjustable

from 80 MHz to 240 MHz. The user may also power off the CPU and make use of the low-power co-processor to

constantly monitor the peripherals for changes or crossing of thresholds. ESP32 integrates a rich set of peripherals,

ranging from capacitive touch sensors, Hall sensors, SD card interface, Ethernet, high-speed SPI, UART, I2S and

I2C.

Note:

* For details on the part number of the ESP32 series, please refer to the document ESP32 Datasheet.

The integration of Bluetooth, Bluetooth LE and Wi-Fi ensures that a wide range of applications can be targeted,

and that the module is future proof: using Wi-Fi allows a large physical range and direct connection to the internet

through a Wi-Fi router, while using Bluetooth allows the user to conveniently connect to the phone or broadcast

low energy beacons for its detection. The sleep current of the ESP32 chip is less than 5 µA, making it suitable

for battery powered and wearable electronics applications. ESP32 supports a data rate of up to 150 Mbps,

and 20.5 dBm output power at the antenna to ensure the widest physical range. As such the chip does offer

industry-leading specifications and the best performance for electronic integration, range, power consumption,

and connectivity.

The operating system chosen for ESP32 is freeRTOS with LwIP; TLS 1.2 with hardware acceleration is built in as

well. Secure (encrypted) over the air (OTA) upgrade is also supported, so that developers can continually upgrade

their products even after their release.

Table 1 provides the specifications of ESP32-WROOM-32 (ESP-WROOM-32).

Table 1: ESP32-WROOM-32 (ESP-WROOM-32) Specifications

Categories Items Specifications

Certification

RF certification FCC/CE/IC/TELEC/KCC/SRRC/NCC

Wi-Fi certification Wi-Fi Alliance

Bluetooth certification BQB

Green certification RoHS/REACH

Wi-Fi Protocols

802.11 b/g/n (802.11n up to 150 Mbps)

A-MPDU and A-MSDU aggregation and 0.4 µs guard

interval support

Frequency range 2.4 GHz ~ 2.5 GHz

Bluetooth

Protocols Bluetooth v4.2 BR/EDR and BLE specification

Radio

NZIF receiver with -97 dBm sensitivity

Class-1, class-2 and class-3 transmitter

AFH

Audio CVSD and SBC

Espressif Systems 1 ESP-WROOM-32 Datasheet V2.4

http://espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf


1. OVERVIEW

Categories Items Specifications

Hardware

Module interface

SD card, UART, SPI, SDIO, I2C, LED PWM, Motor

PWM, I2S, IR

GPIO, capacitive touch sensor, ADC, DAC

On-chip sensor Hall sensor, temperature sensor

On-board clock 40 MHz crystal

Operating voltage/Power supply 2.7 ~ 3.6V

Operating current Average: 80 mA

Minimum current delivered by

power supply
500 mA

Operating temperature range -40°C ~ +85°C

Ambient temperature range Normal temperature

Package size 18±0.2 mm x 25.5±0.2 mm x 3.1±0.15 mm

Software

Wi-Fi mode Station/SoftAP/SoftAP+Station/P2P

Wi-Fi Security WPA/WPA2/WPA2-Enterprise/WPS

Encryption AES/RSA/ECC/SHA

Firmware upgrade
UART Download / OTA (download and write firmware

via network or host)

Software development
Supports Cloud Server Development / SDK for cus-

tom firmware development

Network protocols IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT

User configuration AT instruction set, cloud server, Android/iOS app

Espressif Systems 2 ESP-WROOM-32 Datasheet V2.4



2. PIN DEFINITIONS

2. Pin Definitions

2.1 Pin Layout

Keepout Zone

3V3

EN

IO14

IO12

IO33

IO25

IO26

IO27

GND

IO32

IO35

IO34

SENSOR_VN

SENSOR_VP

37

36

26

25

30

29

28

27

38

31

32

33

34

35

IO23

IO22

IO4

IO0

IO18

IO5

IO17

IO16

GND

IO19

NC

IO21

RXD0

TXD0
IO
13

SD
2

IO
15

IO
2

GN
D

SD
1

SD
0

CL
K

CM
D

SD
3

16 17 23222118

1:GND

2

3

13

14

9

10

11

12

1

8

7

6

5

4

15 242019

Figure 1: ESP32-WROOM-32 (ESP-WROOM-32) Pin layout

2.2 Pin Description

ESP32-WROOM-32 (ESP-WROOM-32) has 38 pins. See pin definitions in Table 2.

Table 2: Pin Definitions

Name No. Type Function

GND 1 P Ground

3V3 2 P Power supply.

EN 3 I Chip-enable signal. Active high.

SENSOR_VP 4 I GPIO36, SENSOR_VP, ADC_H, ADC1_CH0, RTC_GPIO0

SENSOR_VN 5 I GPIO39, SENSOR_VN, ADC1_CH3, ADC_H, RTC_GPIO3

IO34 6 I GPIO34, ADC1_CH6, RTC_GPIO4

IO35 7 I GPIO35, ADC1_CH7, RTC_GPIO5

IO32 8 I/O
GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4,

TOUCH9, RTC_GPIO9

IO33 9 I/O
GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CH5,

TOUCH8, RTC_GPIO8

IO25 10 I/O GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0

IO26 11 I/O GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1

IO27 12 I/O GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV

Espressif Systems 3 ESP-WROOM-32 Datasheet V2.4



2. PIN DEFINITIONS

Name No. Type Function

IO14 13 I/O
GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK,

HS2_CLK, SD_CLK, EMAC_TXD2

IO12 14 I/O
GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ,

HS2_DATA2, SD_DATA2, EMAC_TXD3

GND 15 P Ground

IO13 16 I/O
GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID,

HS2_DATA3, SD_DATA3, EMAC_RX_ER

SHD/SD2* 17 I/O GPIO9, SD_DATA2, SPIHD, HS1_DATA2, U1RXD

SWP/SD3* 18 I/O GPIO10, SD_DATA3, SPIWP, HS1_DATA3, U1TXD

SCS/CMD* 19 I/O GPIO11, SD_CMD, SPICS0, HS1_CMD, U1RTS

SCK/CLK* 20 I/O GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS

SDO/SD0* 21 I/O GPIO7, SD_DATA0, SPIQ, HS1_DATA0, U2RTS

SDI/SD1* 22 I/O GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS

IO15 23 I/O
GPIO15, ADC2_CH3, TOUCH3, MTDO, HSPICS0, RTC_GPIO13,

HS2_CMD, SD_CMD, EMAC_RXD3

IO2 24 I/O
GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0,

SD_DATA0

IO0 25 I/O
GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1,

EMAC_TX_CLK

IO4 26 I/O
GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1,

SD_DATA1, EMAC_TX_ER

IO16 27 I/O GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT

IO17 28 I/O GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_OUT_180

IO5 29 I/O GPIO5, VSPICS0, HS1_DATA6, EMAC_RX_CLK

IO18 30 I/O GPIO18, VSPICLK, HS1_DATA7

IO19 31 I/O GPIO19, VSPIQ, U0CTS, EMAC_TXD0

NC 32 - -

IO21 33 I/O GPIO21, VSPIHD, EMAC_TX_EN

RXD0 34 I/O GPIO3, U0RXD, CLK_OUT2

TXD0 35 I/O GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2

IO22 36 I/O GPIO22, VSPIWP, U0RTS, EMAC_TXD1

IO23 37 I/O GPIO23, VSPID, HS1_STROBE

GND 38 P Ground

Note:

* Pins SCK/CLK, SDO/SD0, SDI/SD1, SHD/SD2, SWP/SD3 and SCS/CMD, namely, GPIO6 to GPIO11 are connected to

the integrated SPI flash integrated on ESP32-WROOM-32 (ESP-WROOM-32) and are not recommended for other uses.

Espressif Systems 4 ESP-WROOM-32 Datasheet V2.4



2. PIN DEFINITIONS

2.3 Strapping Pins

ESP32 has five strapping pins, which can be seen in Chapter 6 Schematics:

• MTDI

• GPIO0

• GPIO2

• MTDO

• GPIO5

Software can read the value of these five bits from the register ”GPIO_STRAPPING”.

During the chip’s system reset (power-on reset, RTC watchdog reset and brownout reset), the latches of the

strapping pins sample the voltage level as strapping bits of ”0” or ”1”, and hold these bits until the chip is powered

down or shut down. The strapping bits configure the device boot mode, the operating voltage of VDD_SDIO and

other system initial settings.

Each strapping pin is connected with its internal pull-up/pull-down during the chip reset. Consequently, if a strap-

ping pin is unconnected or the connected external circuit is high-impendence, the internal weak pull-up/pull-down

will determine the default input level of the strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or apply the host

MCU’s GPIOs to control the voltage level of these pins when powering on ESP32.

After reset, the strapping pins work as the normal functions pins.

Refer to Table 3 for detailed boot modes’ configuration by strapping pins.

Table 3: Strapping Pins

Voltage of Internal LDO (VDD_SDIO)

Pin Default 3.3V 1.8V

MTDI Pull-down 0 1

Booting Mode

Pin Default SPI Boot Download Boot

GPIO0 Pull-up 1 0

GPIO2 Pull-down Don’t-care 0

Debugging Log Printed on U0TXD During Booting?

Pin Default U0TXD Toggling U0TXD Silent

MTDO Pull-up 1 0

Timing of SDIO Slave

Pin Default
Falling-edge Input

Falling-edge Output

Falling-edge Input

Rising-edge Output

Rising-edge Input

Falling-edge Output

Rising-edge Input

Rising-edge Output

MTDO Pull-up 0 0 1 1

GPIO5 Pull-up 0 1 0 1

Note:

Firmware can configure register bits to change the settings of ”Voltage of Internal LDO (VDD_SDIO)” and ”Timing of SDIO

Slave” after booting.

Espressif Systems 5 ESP-WROOM-32 Datasheet V2.4



3. FUNCTIONAL DESCRIPTION

3. Functional Description

This chapter describes the modules and functions integrated in ESP32-WROOM-32 (ESP-WROOM-32).

3.1 CPU and Internal Memory

ESP32-D0WDQ6 contains two low-power Xtensa® 32-bit LX6microprocessors. The internal memory includes:

• 448 kB of ROM for booting and core functions.

• 520 kB (8 kB RTC FAST Memory included) of on-chip SRAM for data and instruction.

– 8 kB of SRAM in RTC, which is called RTC FAST Memory and can be used for data storage; it is

accessed by the main CPU during RTC Boot from the Deep-sleep mode.

• 8 kB of SRAM in RTC, which is called RTC SLOWMemory and can be accessed by the co-processor during

the Deep-sleep mode.

• 1 kbit of eFuse, of which 320 bits are used for the system (MAC address and chip configuration) and the

remaining 704 bits are reserved for customer applications, including Flash-Encryption and Chip-ID.

3.2 External Flash and SRAM

ESP32 supports up to four 16-MB of external QSPI flash and SRAM with hardware encryption based on AES to

protect developers’ programs and data.

ESP32 can access the external QSPI flash and SRAM through high-speed caches.

• Up to 16 MB of external flash are memory-mapped onto the CPU code space, supporting 8, 16 and 32-bit

access. Code execution is supported.

• Up to 8 MB of external flash/SRAM are memory-mapped onto the CPU data space, supporting 8, 16 and

32-bit access. Data-read is supported on the flash and SRAM. Data-write is supported on the SRAM.

ESP32-WROOM-32 (ESP-WROOM-32) integrates 4 MB of external SPI flash. The 4-MB SPI flash can be memory-

mapped onto the CPU code space, supporting 8, 16 and 32-bit access. Code execution is supported. The

integrated SPI flash is connected to GPIO6, GPIO7, GPIO8, GPIO9, GPIO10 and GPIO11. These six pins cannot

be used as regular GPIO.

3.3 Crystal Oscillators

The ESP32 Wi-Fi/BT firmware can only support 40 MHz crystal oscillator for now.

Espressif Systems 6 ESP-WROOM-32 Datasheet V2.4



3. FUNCTIONAL DESCRIPTION

3.4 RTC and Low-Power Management

With the use of advanced powermanagement technologies, ESP32 can switch between different powermodes.

• Power modes

– Active mode: The chip radio is powered on. The chip can receive, transmit, or listen.

– Modem-sleep mode: The CPU is operational and the clock is configurable. The Wi-Fi/Bluetooth base-

band and radio are disabled.

– Light-sleep mode: The CPU is paused. The RTC memory and RTC peripherals, as well as the ULP

co-processor are running. Any wake-up events (MAC, host, RTC timer, or external interrupts) will wake

up the chip.

– Deep-sleep mode: Only the RTC memory and RTC peripherals are powered on. Wi-Fi and Bluetooth

connection data are stored in the RTC memory. The ULP co-processor can work.

– Hibernation mode: The internal 8-MHz oscillator and ULP co-processor are disabled. The RTC recovery

memory is powered down. Only one RTC timer on the slow clock and some RTC GPIOs are active.

The RTC timer or the RTC GPIOs can wake up the chip from the Hibernation mode.

The power consumption varies with different powermodes/sleep patterns andwork statuses of functional modules.

Please see Table 4 for details.

Table 4: Power Consumption by Power Modes

Power mode Description Power consumption

Active (RF working)

Wi-Fi TX packet 14 dBm ~ 19.5 dBm

Please refer to ESP32 Datasheet.Wi-Fi / BT TX packet 0 dBm

Wi-Fi / BT RX and listening

Association sleep pattern (by Light-sleep) 1 mA ~ 4 mA @DTIM3

Modem-sleep The CPU is powered on.

Max speed 240 MHz: 30 mA ~ 50 mA

Normal speed 80 MHz: 20 mA ~ 25 mA

Slow speed 2 MHz: 2 mA ~ 4 mA

Light-sleep - 0.8 mA

Deep-sleep

The ULP co-processor is powered on. 150 µA

ULP sensor-monitored pattern 100 µA @1% duty

RTC timer + RTC memory 10 µA

Hibernation RTC timer only 5 µA

Power off CHIP_PU is set to low level, the chip is powered off 0.1 µA

Note:

• When Wi-Fi is enabled, the chip switches between Active and Modem-sleep mode. Therefore, power consumption
changes accordingly.

• In Modem-sleep mode, the CPU frequency changes automatically. The frequency depends on the CPU load and
the peripherals used.

• During Deep-sleep, when the ULP co-processor is powered on, peripherals such as GPIO and I2C are able to
work.

• When the system works in the ULP sensor-monitored pattern, the ULP co-processor works with the ULP sensor
periodically; ADC works with a duty cycle of 1%, so the power consumption is 100 µA.

Espressif Systems 7 ESP-WROOM-32 Datasheet V2.4

http://espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf


                         HB Stepper Motor Catalog 
MotionKing (China) Motor Industry Co., Ltd.                       
 

www.MotionKing.com                                  MK1106, Rev.04 9 

2 Phase Hybrid Stepper Motor 
17HS series-Size 42mm(1.8 degree) 

 

 

Wiring Diagram: 

 
UNI-POLAR(6 LEADS)        BI-POLAR(4LEADS) 

Electrical Specifications:   

Series 
Model 

Step 
Angle 
(deg) 

Motor 
Length 
(mm) 

Rated 
Current 

(A) 

Phase 
Resistance

(ohm) 

Phase 
Inductance

(mH) 

Holding 
Torque 

(N.cm Min)

Detent 
Torque 

(N.cm Max) 

Rotor 
Inertia 
(g.cm²) 

Lead
Wire
(No.)

Motor
Weight

(g) 

17HS2408 1.8 28 0.6 8 10 12 1.6 34 4 150 

17HS3401 1.8 34 1.3 2.4 2.8 28 1.6 34 4 220 

17HS3410 1.8 34 1.7 1.2 1.8 28 1.6 34 4 220 

17HS3430 1.8 34 0.4 30 35 28 1.6 34 4 220 

17HS3630 1.8 34 0.4 30 18 21 1.6 34 6 220 

17HS3616 1.8 34 0.16 75 40 14 1.6 34 6 220 

17HS4401 1.8 40 1.7 1.5 2.8 40 2.2 54 4 280 

17HS4402 1.8 40 1.3 2.5 5.0 40 2.2 54 4 280 

17HS4602 1.8 40 1.2 3.2 2.8 28 2.2 54 6 280 

17HS4630 1.8 40 0.4 30 28 28 2.2 54 6 280 

17HS8401 1.8 48 1.7 1.8 3.2 52 2.6 68 4 350 

17HS8402 1.8 48 1.3 3.2 5.5 52 2.6 68 4 350 

17HS8403 1.8 48 2.3 1.2 1.6 46 2.6 68 4 350 

17HS8630 1.8 48 0.4 30 38 34 2.6 68 6 350 

*Note: We can manufacture products according to customer's requirements. 
Dimensions: unit=mm                                         Motor Length: 

 
    

Model Length 
17HS2XXX 28 mm 
17HS3XXX 34 mm 

16HS4XXX 40 mm 

16HS8XXX 48 mm 



Features and Benefits
▪ Low RDS(ON) outputs
▪ Automatic current decay mode detection/selection
▪ Mixed and Slow current decay modes
▪ Synchronous rectification for low power dissipation
▪ Internal UVLO
▪ Crossover-current protection
▪ 3.3 and 5 V compatible logic supply
▪ Thermal shutdown circuitry
▪ Short-to-ground protection
▪ Shorted load protection
▪ Five selectable step modes: full, 1/2, 1/4, 1/8, and 1/16

Package:

Description
The A4988 is a complete microstepping motor driver with 
built-in translator for easy operation. It is designed to operate 
bipolar stepper motors in full-, half-, quarter-, eighth-, and 
sixteenth-step modes, with an output drive capacity of up to  
35 V and ±2 A. The A4988 includes a fixed off-time current 
regulator which has the ability to operate in Slow or Mixed 
decay modes.

The translator is the key to the easy implementation of the 
A4988. Simply inputting one pulse on the STEP input drives 
the motor one microstep. There are no phase sequence tables, 
high frequency control lines, or complex interfaces to program. 
The A4988 interface is an ideal fit for applications where a 
complex microprocessor is unavailable or is overburdened.

During stepping operation, the chopping control in the A4988 
automatically selects the current decay mode, Slow or Mixed. 
In Mixed decay mode, the device is set initially to a fast decay 
for a proportion of the fixed off-time, then to a slow decay for 
the remainder of the off-time. Mixed decay current control 
results in reduced audible motor noise, increased step accuracy, 
and reduced power dissipation.

DMOS Microstepping Driver with Translator 
And Overcurrent Protection

Continued on the next page…

A4988

Microcontroller or 
Controller Logic

VDD

VREF GND GND

RESET

ENABLE

SLEEP

DIR

MS2
MS3

MS1

STEP

VBB1CP1 VCPVREG

VDD

ROSC

5 kΩ

0.22 μF

0.22 μF
0.1 μF 0.1 μF

100 μF

CP2

VBB2

OUT1A

OUT1B

SENSE1

OUT2A

OUT2B

SENSE2

A4988

Approximate size

28-contact  QFN
with exposed thermal pad

5 mm × 5 mm × 0.90 mm
(ET package)

Typical Application Diagram

4988-DS, Rev. 4



DMOS Microstepping Driver with Translator
And Overcurrent ProtectionA4988

2Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com

Internal synchronous rectification control circuitry is provided 
to improve power dissipation during PWM operation. Internal 
circuit protection includes: thermal shutdown with hysteresis, 
undervoltage lockout (UVLO), and crossover-current protection. 
Special power-on sequencing is not required.

The A4988 is supplied in a surface mount QFN package (ES), 5 mm 
× 5 mm, with a nominal overall package height of 0.90 mm and an 
exposed pad for enhanced thermal dissipation. It is lead (Pb) free 
(suffix –T), with 100% matte tin plated leadframes.

Description (continued)

Absolute Maximum Ratings
Characteristic Symbol Notes Rating Units

Load Supply Voltage VBB 35 V

Output Current IOUT ±2 A

Logic Input Voltage VIN –0.3 to 5.5 V

Logic Supply Voltage VDD –0.3 to 5.5 V

Motor Outputs Voltage –2.0 to 37 V

Sense Voltage VSENSE –0.5 to 0.5 V

Reference Voltage VREF  5.5 V

Operating Ambient Temperature TA Range S –20 to 85 ºC

Maximum Junction TJ(max) 150 ºC

Storage Temperature Tstg –55 to 150 ºC

Selection Guide
Part Number Package Packing

A4988SETTR-T 28-contact QFN with exposed thermal pad 1500 pieces per 7-in. reel



DMOS Microstepping Driver with Translator
And Overcurrent ProtectionA4988

3Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com

Functional Block Diagram

SENSE1

SENSE2

VREG

VCP

CP2

Control
Logic

DAC

VDD

PWM Latch
Blanking

Mixed Decay

DAC

STEP

DIR

RESET

MS1

PWM Latch
Blanking

Mixed Decay

Current
Regulator

CP1

Charge
Pump

RS2

RS1

VBB1

OUT1A

OUT1B

VBB2

OUT2A

OUT2B

0.1 F

VREF

Translator

Gate
Drive DMOS Full Bridge

DMOS Full Bridge

0.1 F0.22 F

OSC

ROSC

MS2

REF

ENABLE

SLEEP

MS3

OCP

OCP



DMOS Microstepping Driver with Translator
And Overcurrent ProtectionA4988

4Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com

ELECTRICAL CHARACTERISTICS1 at TA = 25°C, VBB = 35 V (unless otherwise noted)
Characteristics Symbol Test Conditions Min. Typ.2 Max. Units

Output Drivers
Load Supply Voltage Range VBB Operating 8 – 35 V
Logic Supply Voltage Range VDD Operating 3.0 – 5.5 V

Output On Resistance RDSON
Source Driver, IOUT = –1.5 A – 320 430 mΩ
Sink Driver, IOUT = 1.5 A – 320 430 mΩ

Body Diode Forward Voltage VF
Source Diode, IF = –1.5 A – – 1.2 V
Sink Diode, IF = 1.5 A – – 1.2 V

Motor Supply Current IBB
fPWM < 50 kHz – – 4 mA
Operating, outputs disabled – – 2 mA

Logic Supply Current IDD
fPWM < 50 kHz – – 8 mA
Outputs off – – 5 mA

Control Logic

Logic Input Voltage
VIN(1) VDD0.7 – – V

VIN(0) – – VDD0.3 V

Logic Input Current
IIN(1) VIN =  VDD0.7 –20 <1.0 20 μA
IIN(0) VIN  =  VDD0.3 –20 <1.0 20 μA

Microstep Select
RMS1 MS1 pin – 100 – kΩ
RMS2 MS2 pin – 50 – kΩ
RMS3 MS3 pin – 100 – kΩ

Logic Input Hysteresis VHYS(IN) As a % of VDD 5 11 19 %
Blank Time tBLANK 0.7 1 1.3 μs

Fixed Off-Time tOFF
OSC = VDD or GND 20 30 40 μs
ROSC = 25 kΩ 23 30 37 μs

Reference Input Voltage Range VREF 0 – 4 V
Reference Input Current IREF –3 0 3 μA

Current Trip-Level Error3 errI

VREF = 2 V, %ITripMAX = 38.27% – – ±15 %
VREF = 2 V, %ITripMAX = 70.71% – – ±5 %
VREF = 2 V, %ITripMAX = 100.00% – – ±5 %

Crossover Dead Time tDT 100 475 800 ns
Protection
Overcurrent Protection Threshold4 IOCPST 2.1 – – A
Thermal Shutdown Temperature TTSD – 165 – °C
Thermal Shutdown Hysteresis TTSDHYS – 15 – °C
VDD Undervoltage Lockout VDDUVLO VDD rising 2.7 2.8 2.9 V
VDD Undervoltage Hysteresis VDDUVLOHYS – 90 – mV

1For input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin.
2Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary for individual 
units, within the specified maximum and minimum limits.
3VERR = [(VREF/8) – VSENSE] / (VREF/8).
4Overcurrent protection (OCP) is tested at TA = 25°C in a restricted range and guaranteed by characterization.



DMOS Microstepping Driver with Translator
And Overcurrent ProtectionA4988

5Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com

THERMAL CHARACTERISTICS

Characteristic Symbol Test Conditions* Value Units
Package Thermal Resistance RθJA Four-layer PCB, based on JEDEC standard 32 ºC/W

*Additional thermal information available on Allegro Web site.

Temperature, TA (°C)

Po
w

er
 D

is
si

pa
tio

n,
 P

D
 (W

)

0

0.50

1.50

2.00

2.50

3.00

3.50

4.00

1.00

20 40 60 80 100 120 140 160

Power Dissipation versus Ambient Temperature

R
JA = 32 ºC/W 



DMOS Microstepping Driver with Translator
And Overcurrent ProtectionA4988

6Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com

Figure 1. Logic Interface Timing Diagram

STEP 

 t A  

t D t C  

MS1, MS2, MS3,  
RESET, or DIR  

t B

Table 1. Microstepping Resolution Truth Table

Time Duration Symbol Typ. Unit
STEP minimum, HIGH pulse width tA 1 μs

STEP minimum, LOW pulse width tB 1 μs

Setup time, input change to STEP tC 200 ns

Hold time, input change to STEP tD 200 ns

MS1 MS2 MS3 Microstep Resolution Excitation Mode
L L L Full Step 2 Phase

H L L Half Step 1-2 Phase

L H L Quarter Step W1-2 Phase

H H L Eighth Step 2W1-2 Phase

H H H Sixteenth Step 4W1-2 Phase


	Project report completed.pdf (p.1-79)
	title pages.pdf (p.1-8)
	temp.pdf (p.9-11)
	Final Body.pdf (p.12-79)
	Chapter 1.pdf (p.1-5)
	chapter 2.pdf (p.6-9)
	chapter 3.pdf (p.10-31)
	chapter 4.pdf (p.32-45)
	chapter 5.pdf (p.46-51)
	chapter 6-7.pdf (p.52-55)
	Appendix A.pdf (p.56-62)
	Appendix B - C.pdf (p.63-68)


	esp-wroom-32_datasheet_en-1223836.pdf (p.80-87)
	17HS2408-MotionKing.pdf (p.88)
	A4988_V4.PDF (p.89-94)

