
Technique For Load Balancing with
Kubernetes and Python 

A Project report submitted in partial fulfilment 

of the requirements for the degree of B. Tech in Electrical Engineering

By

Name of the Students (Roll No.)
Abhro Roy (11701619034)

Deepanjan Mondal (11701619025)

Anish Chakraborty (11701619015)

Under the supervision of
 

Shilpi Bhattacharya, Associate Professor 

Department of Electrical Engineering

Department of Electrical Engineering

RCC INSTITUTE OF INFORMATION TECHNOLOGY

CANAL SOUTH ROAD, BELIAGHATA, KOLKATA – 700015, WEST BENGAL

Maulana Abul Kalam Azad University of Technology (MAKAUT)

1



ACKNOWLEDGEMENT

It is my great fortune that I have got opportunity to carry out this project work under the supervision

of Prof. (Dr.) Shilpi Bhattacharya in the Department of Electrical Engineering, RCC Institute of

Information Technology (RCCIIT),  Canal South Road, Beliaghata,  Kolkata-700015, affiliated to

Maulana Abul Kalam Azad University of Technology (MAKAUT), West Bengal, India. I

express my sincere thanks and deepest  sense of gratitude to my guide for his constant  support,

unparalleled guidance and limitless encouragement. 

I  wish  to  convey  my  gratitude  to  Prof.  (Dr.)  Shilpi  Bhattacharya,  HOD,  Department  of

Electrical  Engineering,  RCCIIT  and  to  the  authority  of  RCCIIT  for  providing  all  kinds  of

infrastructural facility towards the research work.

I  would  also  like  to  convey  my  gratitude  to  all  the  faculty  members  and  staffs  of  the

Department of Electrical Engineering, RCCIIT for their whole hearted cooperation to make this

work turn into reality.

-----------------------------------------------

 

-----------------------------------------------

                                                                                    -----------------------------------------------

                                                                                Signature of the Students
Place: 

Date: 

2



Department of Electrical Engineering
RCC INSTITUTE OF INFORMATION TECHNOLOGY

CANAL SOUTH ROAD, BELIAGHATA, KOLKATA – 700015, WEST BENGAL

CERTIFICATE
To whom it may concern

This is to certify that the project work entitled  Technique For Load Balancing

with Kubernetes and Python is the bona fide work carried out by  Abhro Roy

(11701619034), Deepanjan  Mondal  (11701619025)  ,  Anish  Chakraborty

(11701619015)  students of B.Tech in the Dept. of Electrical Engineering, RCC

Institute  of  Information  Technology  (RCCIIT),  Canal  South  Road,  Beliaghata,

Kolkata-700015, affiliated to Maulana  Abul Kalam Azad University of Technology

(MAKAUT),  West  Bengal,  India,  during  the  academic  year  2021-22,  in  partial

fulfillment  of  the  requirements  for  the  degree  of  Bachelor  of  Technology  in

Electrical  Engineering   and this  project  has  not  submitted  previously  for  the

award of any other degree, diploma and fellowship. 

               

                                                                         

_____________________ ________________________

Signature of the Guide                                                              Signature of the HOD, EE
 Name:       Name: 
 Designation:      Designation: 

___________________________                                                                                                          
Signature of the External Examiner 
Name:
Designation:                                                                        

3



TABLE OF CONTENTS

1. Introduction                                                                                     5

2. Literature Survey                                                                            6
                   

3. Technologies and methodologies used in this project                  6
3.1 Kubernetes                                                                                    6
3.2 Python                                                                                           6
3.3 Docker                                                                                          6 

4. Techniques used for real-life implementation and working        6  
4.1 Writing the python script                                                              6
4.2 Creating the custom image with Dockerfile                                 7
4.3 Setting up the Kubernetes cluster                                                 8
4.4 Assigning nodes and pods                                                            9   
4.5 Exposing outside Kubernetes                                                        10

5. Visual Representation                                                                      11

6. Future Work                                                                                     11

7. Conclusion                                                                                        11

REFERENCES                                                                                 12

4



Technique For Load Balancing with Kubernetes and Python
Abhro Roy, Deepanjan Mondal, Anish Chakraborty, Shilpi Bhattacharya

Electrical Engineering
RCC Institute of Information Technology, Kolkata

e-Mail: abirabhroroy@gmail.com

ABSTRACT

Often we find servers across organizations and institutes having servers which have minimal to no load on 
normal days but peak during certain times of the year and are slow and overload rendering the site to little 
use. Kubernetes enables versatile deployment of applications which are auto-scaled, auto-maintained, and 
auto-managed depending on variety of parameters including peak load.

Keywords:  Kubernetes, Python, Docker, Linux
1. INTRODUCTION

Kubernetes  is  a  portable,  extensible,  open  source  platform  for  managing  containerized  workloads  and
services,  that  facilitates  both  declarative  configuration  and  automation.  It  has  a  large,  rapidly  growing
ecosystem. Kubernetes services, support, and tools are widely available.

Kubernetes is an open-source platform renowned for its versatility in managing containerized workloads and
services.  It  offers  portability,  enabling  seamless  deployment  and  management  across  various  cloud
environments,  including public,  private,  and  hybrid  setups.  With  its  extensible  architecture,  Kubernetes
allows  users  to  incorporate  additional  functionalities  through  a  wide  range  of  plugins  and  extensions
available in its thriving ecosystem.

At the heart of Kubernetes lies the concept of declarative configuration, empowering users to define the
desired state of their applications and infrastructure. Through automated orchestration, Kubernetes handles
the complexities of deploying, scaling, and updating applications, freeing developers and operators to focus
on higher-level tasks.

The name "Kubernetes" derives its significance from Greek, meaning "helmsman" or "pilot." This metaphor
aptly  represents  Kubernetes'  role  as  a  guiding  force,  steering  applications  and  services towards smooth
operation and optimal performance. The abbreviation "K8s" simplifies pronunciation while emphasizing the
eight letters between "K" and "s."

In 2014, Google's decision to open-source Kubernetes marked a pivotal moment in container orchestration.
Leveraging  Google's  extensive  experience  in  managing  production  workloads  at  scale,  Kubernetes
incorporates industry best practices and community-driven innovations. Today, it has become the industry
standard for container orchestration due to its robust architecture and feature set.

Kubernetes owes its success and popularity to its vibrant ecosystem. An active community of developers,
operators, and vendors contribute to its development, offering a wealth of tools, frameworks, and services
that  complement and enhance Kubernetes'  capabilities. This extensive  ecosystem ensures comprehensive
support, documentation, and resources, simplifying adoption and utilization of Kubernetes for various use
cases.

In conclusion, Kubernetes is a dynamic and evolving platform that empowers organizations to efficiently
manage and scale their containerized workloads and services. Its portability, extensibility, and declarative
nature, along with its thriving ecosystem, make it the preferred choice for modern application deployment
and orchestration.[1]

5



2. LITERATURE SURVEY

Deploying  a  Kubernetes  cluster  is  cost-effective  as  it  leverages  open-source  code  freely  available  to
everyone. The software itself is open source and does not require any licensing fees. However, it is important
to note that while the software is free, there are associated costs for hardware and infrastructure.

To host a Kubernetes architecture, a relatively modest bare-metal system is typically sufficient. It does not
necessarily  require high-end or  expensive hardware.  A moderately capable system can effectively run a
Kubernetes cluster without significant issues. The hardware requirements may vary depending on the scale
and complexity of the workload and the number of nodes in the cluster.

It is worth mentioning that although the software cost is minimal, there may still  be expenses related to
networking,  storage,  and  other  infrastructure  components  required  to  support  the  Kubernetes  cluster.
Additionally,  there  might  be  costs  associated  with  maintenance,  monitoring,  and  ongoing  operational
support.

Overall, while the software itself is open source and freely available, the cost of deploying a Kubernetes
cluster  includes  considerations  for  hardware and infrastructure,  as well  as  potential  ongoing operational
expenses.[2]

3. TECHNOLOGIES AND METHODOLOGIES USED IN THIS PROJECT

The resources used to deploy this entire architecture are less in number, but implemented in depth. They are
as follows:

1. KUBERNETES

The actual platform which hosts our code, application and all the bells and whistles required to seamlessly
expose the application as a service outside Kubernetes.

2. PYTHON

The application is developed using a specific programming language, and it is complemented by a Python-
Flask  server  to  facilitate  hosting  the  application  within  a  containerized  environment.  The  choice  of
programming language depends on various factors, including the requirements, preferences, and expertise of
the  development  team.  Python-Flask,  a  popular  web  framework,  is  utilized  as  the  server  to  provide  a
lightweight  and  flexible  platform  for  running  the  application.  By  combining  the  chosen  programming
language with the Python-Flask server, the application can be effectively encapsulated and deployed within a
container, ensuring portability, scalability, and ease of management.

3. DOCKER

Docker is a containerization platform used to deploy containers, which are nothing but a shell of a base
image  of  an  OS,  on  which  one  can  install  all  the  resources  one  installs  on  a  normal  bare-metal  OS.
Containers are surprisingly light and fast and are used during mass deployment of similar applications for
milking out the most of the resources available at hand.

4. TECHNIQUES USED FOR REAL-LIFE IMPLEMENTATION AND WORKING

     1. Writing the python script

Write a python code with Flask web server to print a basic html page with ip of the host it is running on and 
push the image to DockerHub. 

6



7



8



        4. Assigning Node and Pods

To deploy our application on Kubernetes, we begin by pulling our custom Docker image from DockerHub. 
This image contains all the necessary dependencies and configurations for our application.

Next, we set up a pod, which is a single instance of a Docker container, using the pulled image. Kubernetes 
then assigns an IP address to the pod and determines the node where the pod will run. We can access this IP 
address from within the Kubernetes cluster to verify the pod's availability.

9



10



11



REFERENCES

[1]   D. Ashley, “Using Flask and Jinja,” Foundation Dynamic Web Pages with Python, pp. 159–181, 2020, doi: 10.1007/978-1-
4842-6339-6_5.

[2]   D. Ashley, “Introduction to Web Servers,” Foundation Dynamic Web Pages with Python, pp. 1–27, 2020, doi: 10.1007/978-1-
4842-6339-6_1.

[3]  O. Yilmaz, “Introduction,” Extending Kubernetes, pp. 1–19, 2021, doi: 10.1007/978-1-4842-7095-0_1.
[4]  M. Lukša, “Kubernetes erweitern,” Kubernetes in Action, pp. 553–578, Jul. 2018, doi: 10.3139/9783446456020.018

[5]  Q. Li and B. Moon, “Distributed cooperative Apache web server,” Proceedings of the tenth international conference on World 
Wide Web
[6]   M. Shahinpoor, Y. Bar-Cohen, T. Xue, J.O. Simpson and J. Smith, “Ionic Polymer-Metal Composites (IPMCs) as Biomimetic 
Sensors, Actuators and Artificial Muscles: A Review”, Proceedings of SPIE's 5th Annual International Symposium on Smart 
Structures and Materials, 1-5 March, 1998, San Diego, CA DOI: 10.1088/0964-1726/7/6/001
[7]   Zheng Chen, Yantao Shen, Jason Malinak, Ning Xi, Xiaobo Tan,“Hybrid IPMC/PVDF Structure for Simultaneous Actuation 
and Sensing”, Proceedings of SPIE Vol. 6168, Smart Structures and Materials, pp. 61681L 1 – 61681L9, 2006. DOI: 
10.1109/ICIEV.2014.6850840
[8]   R.K. Jain, S. Datta and S. Majumder, “Design and Control of an EMG Driven IPMC Based Artificial Muscle Finger”
[9] S. Bhat, “Introduction to Containerization,” Practical Docker with Python, pp. 1–8, 2018, doi: 10.1007/978-1-4842-3784-7_1.
[10] K. Jangla, “Docker Compose,” Accelerating Development Velocity Using Docker, pp. 77–98, 2018, doi: 10.1007/978-1-4842-

3936-0_6.

12


