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ABSTRACT

Often we find servers across organizations and institutes having servers which have minimal to no load on
normal days but peak during certain times of the year and are slow and overload rendering the site to little
use. Kubernetes enables versatile deployment of applications which are auto-scaled, auto-maintained, and
auto-managed depending on variety of parameters including peak load.
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1. INTRODUCTION

Kubernetes is a portable, extensible, open source platform for managing containerized workloads and
services, that facilitates both declarative configuration and automation. It has a large, rapidly growing
ecosystem. Kubernetes services, support, and tools are widely available.

Kubernetes is an open-source platform renowned for its versatility in managing containerized workloads and
services. It offers portability, enabling seamless deployment and management across various cloud
environments, including public, private, and hybrid setups. With its extensible architecture, Kubernetes
allows users to incorporate additional functionalities through a wide range of plugins and extensions
available in its thriving ecosystem.

At the heart of Kubernetes lies the concept of declarative configuration, empowering users to define the
desired state of their applications and infrastructure. Through automated orchestration, Kubernetes handles
the complexities of deploying, scaling, and updating applications, freeing developers and operators to focus
on higher-level tasks.

The name "Kubernetes" derives its significance from Greek, meaning "helmsman" or "pilot." This metaphor
aptly represents Kubernetes' role as a guiding force, steering applications and services towards smooth
operation and optimal performance. The abbreviation "K8s" simplifies pronunciation while emphasizing the
eight letters between "K" and "s."

In 2014, Google's decision to open-source Kubernetes marked a pivotal moment in container orchestration.
Leveraging Google's extensive experience in managing production workloads at scale, Kubernetes
incorporates industry best practices and community-driven innovations. Today, it has become the industry
standard for container orchestration due to its robust architecture and feature set.

Kubernetes owes its success and popularity to its vibrant ecosystem. An active community of developers,
operators, and vendors contribute to its development, offering a wealth of tools, frameworks, and services
that complement and enhance Kubemetes' capabilities. This extensive ecosystem ensures comprehensive
support, documentation, and resources, simplifying adoption and utilization of Kubernetes for various use
cases.

In conclusion, Kubernetes is a dynamic and evolving platform that empowers organizations to efficiently
manage and scale their containerized workloads and services. Its portability, extensibility, and declarative
nature, along with its thriving ecosystem, make it the preferred choice for modern application deployment
and orchestration.[1]



2. LITERATURE SURVEY

Deploying a Kubernetes cluster is cost-effective as it leverages open-source code freely available to
everyone. The software itself is open source and does not require any licensing fees. However, it is important
to note that while the software is free, there are associated costs for hardware and infrastructure.

To host a Kubernetes architecture, a relatively modest bare-metal system is typically sufficient. It does not
necessarily require high-end or expensive hardware. A moderately capable system can effectively run a
Kubernetes cluster without significant issues. The hardware requirements may vary depending on the scale
and complexity of the workload and the number of nodes in the cluster.

It is worth mentioning that although the software cost is minimal, there may still be expenses related to
networking, storage, and other infrastructure components required to support the Kubernetes cluster.
Additionally, there might be costs associated with maintenance, monitoring, and ongoing operational
support.

Overall, while the software itself is open source and freely available, the cost of deploying a Kubernetes
cluster includes considerations for hardware and infrastructure, as well as potential ongoing operational
expenses.[2]

3. TECHNOLOGIES AND METHODOLOGIES USED IN THIS PROJECT

The resources used to deploy this entire architecture are less in number, but implemented in depth. They are
as follows:
1. KUBERNETES

The actual platform which hosts our code, application and all the bells and whistles required to seamlessly
expose the application as a service outside Kubernetes.

2. PYTHON

The application is developed using a specific programming language, and it is complemented by a Python-
Flask server to facilitate hosting the application within a containerized environment. The choice of
programming language depends on various factors, including the requirements, preferences, and expertise of
the development team. Python-Flask, a popular web framework, is utilized as the server to provide a
lightweight and flexible platform for running the application. By combining the chosen programming
language with the Python-Flask server, the application can be effectively encapsulated and deployed within a
container, ensuring portability, scalability, and ease of management.

3. DOCKER
Docker is a containerization platform used to deploy containers, which are nothing but a shell of a base
image of an OS, on which one can install all the resources one installs on a normal bare-metal OS.

Containers are surprisingly light and fast and are used during mass deployment of similar applications for
milking out the most of the resources available at hand.

4. TECHNIQUES USED FOR REAL-LIFE IMPLEMENTATION AND WORKING

1. Writing the python script

Write a python code with Flask web server to print a basic html page with ip of the host it is running on and
push the image to DockerHub.



Below is the python code implemented. A rather simple code stating our application be broadcast on all IPs
(ref. Last line ‘host=0.0.0.0"). On going to our default route which is ‘/’ in ‘webgen.americaniche.com/’, the
below code is executed. The code gets the host IP the application is running on and displays it has HTML
content on the webpage. [3]-[4]

%' root@JEET:/

flask Flask
subprocess
socket
app = Flask(__name__)

/"
Q)

(socket.gethostbyname(socket.gethostname()))

+socket.gethostbyname(socket.gethostname())+

__hame__ == :
app.run(Chost= ,debug= )

2. Creating the custom image with Dockerfile

We first build a custom Docker image with base OS ‘ubuntu:latest” and we setup the image to do the
following:

Expose port 5000 outside container where our server will be running.

Copy our Python code from host os to image os.

Install python and its dependencies.

Create entry-point script to run our python code whenever the image is deployed.[5]



ubuntu:latest
5000
/app.py /

apt update

apt install python3
apt install python3-pip
pip3 install Flask

apt install net-tools
apt install vim

apt install cron

3. Setting up the Kubernetes cluster

Using Vagrant and Ansible we set up a 5 node Kubernetes cluster of which one is the master node
(responsible for managing worker nodes and for deploying apps and services) and four are the worker/slave
nodes.

The Vagrantfile is responsible for spinning up the required number of virtual machines and naming them,
provisioning resources, disk space, assign IP etc. , and the ansible playbook, which is embedded within the
Vagrantfile, and is responsible for installing required applications, dependencies, features etc. The first
image below is the Vagrantfile and the second image is the trimmed ansible playbook for the VM that will
act as our master node in our Kubernetes cluster.[6]

Vagrant.configure("2") do |config]|
config.ssh.insert_key = false

config.vm.provider "virtualbox" do |v]|
v.memory = 4096
v.cpus = 2

end

config.vm.define "k8s-master" do |master|

master.vm.box = IMAGE_NAME

master.vm.network "private_network", ip: "192.168.56.10"

master.vm.hostname = "k8s-master"

master.vm.provision "ansible" do |ansible]
ansible.playbook = "master-playbook.yaml"
ansible.extra_vars = {

node_ip: "192.168.56.10",

}

end

.N).each do |i]
config.vm.define "node-#{i}" do |node]
node.vm.box = IMAGE_NAME
node.vm.network "private_network", ip: "192.168.56.#{i + 10}"
node.vm.hostname = "node-#{i}"
node.vm.provision "ansible" do |ansible]
ansible.playbook = "node-playbook.yaml"
ansible.extra_vars = {
node_ip: "192.168.56.#{i + 10}",
}




[abhro@backendserver vaganskubel]$ cat master-playbook.yaml

- hosts: all
become: true
tasks:
— name: Install packages that allow apt to be used over HTTPS
apt:
name: "{{ packages }}"
state: present
update_cache: yes
Vars:
packages:
apt-transport-https
ca-certificates
curl
gnupg-agent
software-properties—common

name: Add an apt signing key for Docker

apt_key:
url: https://download.docker.com/1linux/ubuntu/gpg
state: present

name: Add apt repository for stable version

apt_repository:
repo: deb [arch=amdéd] https://download.docker.com/linux/ubuntu xenial stable
state: present

name: Install docker and 1ts dependecies
apt:

name: "{{ packages }}"

state: present

update_cache: yes
Vars:

packages:

- docker-ce

- docker-ce-cli

- containerd.io
notify:

- docker status

name: Add vagrant user to docker group
user:

name: vagrant

group: docker

name: Remove swapfile from /etc/fstab
mount:
name: "{{ item }}"

4. Assigning Node and Pods

To deploy our application on Kubernetes, we begin by pulling our custom Docker image from DockerHub.
This image contains all the necessary dependencies and configurations for our application.

Next, we set up a pod, which is a single instance of a Docker container, using the pulled image. Kubernetes
then assigns an IP address to the pod and determines the node where the pod will run. We can access this IP
address from within the Kubernetes cluster to verify the pod's availability.



Once the pod is successfully deployed, we create a NodePort type service. This service acts as a load
balancer and is associated with our pod. It exposes the application outside of the Kubernetes cluster using a
port that is opened on the node where the pod is hosted. This allows external traffic to reach our application.

In order to ensure high availability, we employ a DaemonSet. This configuration allows us to replicate our
pod and deploy one copy on each node within the Kubernetes cluster. By doing so, we distribute our
application across multiple nodes, making it highly available and resilient to node failures.

The combination of the pod, service, and DaemonSet enables us to efficiently deploy and manage our
application on Kubernetes. It provides scalability, fault tolerance, and ease of access to our application both
within and outside of the Kubernetes cluster.[7]-[9]

5. Exposing outside Kubernetes

To enable access to our Pod from anywhere in the world while ensuring security and convenience, we utilize
an Apache server virtual host with a reverse proxy. This setup allows us to prevent the leaking of the
underlying port information and provides a pre-configured AWS Route53 domain for easy access.

In this configuration, the <VirtualHost *:80> directive indicates that we are creating a virtual host to handle
incoming requests on port 80. The ServerName parameter is set to our fully qualified domain name
(FQDN), which in this case is webgen.americaniche.com.

The most crucial part of this setup is the ProxyPass configuration. It acts as a reverse proxy, forwarding
requests to the specified port where our application is running, which is represented by <port>. By doing so,
the actual port where our application is running remains hidden, preventing exposure and minimizing the
risk of compromise or attacks.

With this setup, when users access http://webgen.americaniche.com, the requests are redirected to the
Apache server, which then proxies the traffic to the underlying application running on the designated port.
This provides a seamless and secure way to access our application from anywhere in the world without
revealing the underlying infrastructure details.[10]

<VirtualHost *:80>
Servername webgen.americaniche.com

Proxypass / http://webgen.americaniche.com:30034/
ProxypassReverse / http://webgen.americaniche.com:30034/
</VirtualHost>

10



5. VISUAL REPRESENTATION
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6. FUTURE WORK

Our scope to this project ends here and goes on to show the capabilities offered, however, it can be extended
to include sticky sessions to bind to users to save login data or session data, other enhancements and
whatnot. For this we would need to find a requirement to satisfy, and that supports this development.[6]-[9]

7. CONCLUSION

Thus with this implementation we prove the ease of usability, low cost and setup of a deployment platform
that can host entire infrastructures with the proper resources anywhere in the world, for a fraction of the cost

required by mainstream cloud platforms like AWS and Azure.
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