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ABSTRACT

Often we find servers across organizations and institutes having servers which have minimal to no load on 
normal days but peak during certain times of the year and are slow and overload rendering the site to little 
use. Kubernetes enables versatile deployment of applications which are auto-scaled, auto-maintained, and 
auto-managed depending on variety of parameters including peak load.
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1. INTRODUCTION

Kubernetes  is  a  portable,  extensible,  open  source  platform  for  managing  containerized  workloads  and
services,  that  facilitates  both  declarative  configuration  and  automation.  It  has  a  large,  rapidly  growing
ecosystem. Kubernetes services, support, and tools are widely available.

Kubernetes is an open-source platform renowned for its versatility in managing containerized workloads and
services.  It  offers  portability,  enabling  seamless  deployment  and  management  across  various  cloud
environments,  including public,  private,  and  hybrid  setups.  With  its  extensible  architecture,  Kubernetes
allows  users  to  incorporate  additional  functionalities  through  a  wide  range  of  plugins  and  extensions
available in its thriving ecosystem.

At the heart of Kubernetes lies the concept of declarative configuration, empowering users to define the
desired state of their applications and infrastructure. Through automated orchestration, Kubernetes handles
the complexities of deploying, scaling, and updating applications, freeing developers and operators to focus
on higher-level tasks.

The name "Kubernetes" derives its significance from Greek, meaning "helmsman" or "pilot." This metaphor
aptly  represents  Kubernetes'  role  as  a  guiding  force,  steering  applications  and  services towards smooth
operation and optimal performance. The abbreviation "K8s" simplifies pronunciation while emphasizing the
eight letters between "K" and "s."

In 2014, Google's decision to open-source Kubernetes marked a pivotal moment in container orchestration.
Leveraging  Google's  extensive  experience  in  managing  production  workloads  at  scale,  Kubernetes
incorporates industry best practices and community-driven innovations. Today, it has become the industry
standard for container orchestration due to its robust architecture and feature set.

Kubernetes owes its success and popularity to its vibrant ecosystem. An active community of developers,
operators, and vendors contribute to its development, offering a wealth of tools, frameworks, and services
that  complement and enhance Kubernetes'  capabilities. This extensive  ecosystem ensures comprehensive
support, documentation, and resources, simplifying adoption and utilization of Kubernetes for various use
cases.

In conclusion, Kubernetes is a dynamic and evolving platform that empowers organizations to efficiently
manage and scale their containerized workloads and services. Its portability, extensibility, and declarative
nature, along with its thriving ecosystem, make it the preferred choice for modern application deployment
and orchestration.[1]
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2. LITERATURE SURVEY

Deploying  a  Kubernetes  cluster  is  cost-effective  as  it  leverages  open-source  code  freely  available  to
everyone. The software itself is open source and does not require any licensing fees. However, it is important
to note that while the software is free, there are associated costs for hardware and infrastructure.

To host a Kubernetes architecture, a relatively modest bare-metal system is typically sufficient. It does not
necessarily  require high-end or  expensive hardware.  A moderately capable system can effectively run a
Kubernetes cluster without significant issues. The hardware requirements may vary depending on the scale
and complexity of the workload and the number of nodes in the cluster.

It is worth mentioning that although the software cost is minimal, there may still  be expenses related to
networking,  storage,  and  other  infrastructure  components  required  to  support  the  Kubernetes  cluster.
Additionally,  there  might  be  costs  associated  with  maintenance,  monitoring,  and  ongoing  operational
support.

Overall, while the software itself is open source and freely available, the cost of deploying a Kubernetes
cluster  includes  considerations  for  hardware and infrastructure,  as well  as  potential  ongoing operational
expenses.[2]

3. TECHNOLOGIES AND METHODOLOGIES USED IN THIS PROJECT

The resources used to deploy this entire architecture are less in number, but implemented in depth. They are
as follows:

1. KUBERNETES

The actual platform which hosts our code, application and all the bells and whistles required to seamlessly
expose the application as a service outside Kubernetes.

2. PYTHON

The application is developed using a specific programming language, and it is complemented by a Python-
Flask  server  to  facilitate  hosting  the  application  within  a  containerized  environment.  The  choice  of
programming language depends on various factors, including the requirements, preferences, and expertise of
the  development  team.  Python-Flask,  a  popular  web  framework,  is  utilized  as  the  server  to  provide  a
lightweight  and  flexible  platform  for  running  the  application.  By  combining  the  chosen  programming
language with the Python-Flask server, the application can be effectively encapsulated and deployed within a
container, ensuring portability, scalability, and ease of management.

3. DOCKER

Docker is a containerization platform used to deploy containers, which are nothing but a shell of a base
image  of  an  OS,  on  which  one  can  install  all  the  resources  one  installs  on  a  normal  bare-metal  OS.
Containers are surprisingly light and fast and are used during mass deployment of similar applications for
milking out the most of the resources available at hand.

4. TECHNIQUES USED FOR REAL-LIFE IMPLEMENTATION AND WORKING

     1. Writing the python script

Write a python code with Flask web server to print a basic html page with ip of the host it is running on and 
push the image to DockerHub. 
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        4. Assigning Node and Pods

To deploy our application on Kubernetes, we begin by pulling our custom Docker image from DockerHub. 
This image contains all the necessary dependencies and configurations for our application.

Next, we set up a pod, which is a single instance of a Docker container, using the pulled image. Kubernetes 
then assigns an IP address to the pod and determines the node where the pod will run. We can access this IP 
address from within the Kubernetes cluster to verify the pod's availability.
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