
1

 Noise Removal in an Image Using a Neuro-fuzzy Technique and Evolutionary Method
 Report submitted for the partial fulfillment of the requirements for the degree of

Bachelor of Technology in
Information Technology

 Submitted by

ARIJIT SHIT 11700214020

SUBROTO ROY 11700214073

SWARNAVA CHATTOPADHYAY 11700214081

Under the Guidance of MR. SOUMYADIP DHAR
Assistant Professor, Department of Information Technology

RCC Institute of Information Technology, Kolkata

RCC Institute of Information Technology
Canal South Road, Beliaghata, Kolkata – 700 015

[Affiliated to West Bengal University of Technology]

2

RCC INSTITUTE OF INFORMATION TECHNOLOGY
KOLKATA–7OOO15, INDIA

CERTIFICATE

The report of the Project titled Noise removal in an image using a neuro fuzzy
technique and evolutionary method submitted Arijit Shit (11700214020), Swarnava Chattopadhyay (11700214081), Subroto Roy (11700214073) of B.Tech.(IT) 8th Semester of 2018 has been prepared under our supervision for the partial fulfillment of the requirements for B Tech (IT) degree in Maulana Abul Kalam Azad University of Technology. The report is here by forwarded

... Mr. Soumyadip Dhar, Assistant Professor, Dept. of Information Technology, RCCIIT,Kolkata
Counter signed by

…………………………………………. Dr. Abhijit Das, Associate Professor & Head, Dept of Information Technology RCC Institute of Information Technology, Kolkata – 700015, India

3

ACKNOWLEDGEMENT

We would like to express our sincere gratitude to MR. SOUMYADIP DHAR of the department
of Information Technology, whose role as project guide was invaluable for the project. We are
extremely thankful for the keen interest he took in advising us, for the books and reference
materials provided for the moral support extended to us.

Last but not the least we convey our gratitude to all the teachers for providing us the technical
skill that will always remain as our asset and to all non-teaching staff for the gracious hospitality
they offered us.

Place: RCCIIT, Kolkata

Date:

 ………………………………
Arijit Shit

 ………………………………
 Swarnava Chattopadhyay

 ………………………………
 Subroto Roy

4

RCC INSITUTE OF INFORMATION TECHNOLOGY
KOLKATA– 7OOO15, INDIA

CERTIFICATE of ACCEPTANCE

The report of the Project titled Noise removal in an image using a neuro fuzzy
technique and evolutionary method submitted Arijit Shit (11700214020), Swarnava
Chattopadhyay (11700214081), Subroto Roy (11700214073) of B.Tech.(IT) 8th Semester
of 2018 has been prepared under our supervision for the partial fulfillment of the
requirements for B Tech (IT) degree in Maulana Abul Kalam Azad University of
Technology.

Name of the Examiner Signature with Date

1. ……………………………………. .………………………….

2. ……………………………………. .…………………………..

3. ……………………………………. ……………………………

4. ……………………………………. ……………………………

5……………………………………… ……………………………

6…………………………………….. ……………………………

5

INDEX

Sl. No. Contents Page Numbers

1 Introduction 6

2 Problem Analysis 8

3 Review of Literature 9

4 Network Structure for impulse
noise removal 11

5 Problem discussion 15

6 Implementation of network structure
using bat algorithm 16

7 Results and discussion 17

8 Output with screenshots 21

9 Conclusion / Future Scope of Work 29

10 Reference 30

11 Appendix Program Code 32
Matlab Functions Used 42

6

 1. Introduction

Image noise is a random variation of brightness and color information in an image and is usually
an aspect of electronic noise. Image noise can range from almost imperceptible specks on a
digital photograph taken in good light, to optical and radio-astronomical images that are almost
entirely noise, from which a small amount of information can be derived by sophisticated
processing. Such a noise level would be unacceptable in a photograph since it would be
impossible even to determine the subject. Noise can seriously affect quality of digital images.
Noise removal is one of the most important areas within digital image processing. One type of
noise that can appear in images is impulse noise, which can be produced during image
acquisition, storage, or transmission and can affect later stages of processing if not removed
properly while preserving the details . This problem arises in many fields, from medical imaging
to the analysis of satellite images. Impulse noise appears when some of the pixels in the image
are replaced by outliers while the rest remain unchanged. Outliers can have a fixed minimum or
maximum gray-scale value or may vary within that range. The first type is known as “salt and
pepper” and is the one analyzed in this paper. Fat-tail distributed or "impulsive" noise,
sometimes called salt-and-pepper noise or spike noise is very common form of corruption. An
image containing salt-and-pepper noise will have dark pixels in bright regions and bright pixels
in dark regions. This type of noise can be caused by analog-to-digital-convertor errors, bit errors
in transmission, etc. Very different from Gaussian noise, the impulse noise is not evenly
distributed throughout an image but it is randomly arranged, meaning all the image pixels are not
corrupted but the corruption is scattered all throughout the image. This uncorrelated nature of
impulse noise makes it a challenging task for identification and de-noising. Fuzzy models can
represent a very appropriate solution to this problem because uncertainty generally affects the
process of extracting information from corrupted data.
Fuzzy logic offers us a powerful tool to represent and process human knowledge in form of
fuzzy if-then-else rules. Fuzzy sets are a generalization of the classical set theory and its ability
to capture imperfections has been utilized in various fields over the last few decades.
Fuzzification of the image makes it easier to identify the correctness of an image pixel by
comparing it with its neighboring pixels. This mimic of human knowledge through fuzzy logic
can be utilized more efficiently if human learning could also have been utilized.
Artificial Neural Networks (ANN) based approaches are best suited for this representation of
human learning and processing. ANN’s architecture is completely dependent on the goal that is
intended to achieve. Massive connectivity amongst the neurons makes it more fault tolerant.
Performance of an ANN is heavily dependent on the selection of appropriate parameters that
governs the architecture. Parameter selection depends on the efficient search algorithms for
complex search spaces. Nature inspired Bat Algorithm (BA) introduced in the year 2010 by Xin-
She Yang is a very efficient algorithm for this searching.
This project aims to implement fuzzy logic, artificial neural network and Bat Algorithm to
efficiently remove impulse noise from images.

7

Applications of impulse noise-removal from an image:
Visual information is the most important type of information perceived, processed and
interpreted by the human brain. One third of the cortical area of the human brain is dedicated to
visual information processing. Image filtering as a computer-based technology, carries out
manipulation and interpretation of such visual information, and it plays an increasingly important
role in many aspects of our daily life, as well as in a wide variety of disciplines and fields in
science and technology, with applications such as television, photography, medical diagnosis
and industrial inspection.
• Computerized photography (e.g., Photoshop)
• Space image filtering (e.g., Hubble space telescope images, interplanetary probe images)
• Clear detection of broken limbs through noise removal from X-ray plates
• Clear detection of Cancer through noise removal from mammographic plates
• Recovery of ancient and historical images through noise removal
• Recovery of distorted images which is required in crime investigation
• Noise removal of highly corrupted data

2. Problem Analysis
Aim: To implement fuzzy logic, artificial neural network and Bat Algorithm to efficiently
remove impulse noise from images.
Problem definition:
The impulse noise removal of an image can be formulated as follows:
Given an input image of an entity, how can we
a result of bat algorithm and how it can be fed to the neural network which will remove impulse
noise from that image and produce a noise
Broad Classification:

 Study and analysis of fuzzy logic, artificial neural network and Bat Algorithm Implementation of all the methods Training the neural network and feeding
through which satisfactory results can be achieved Analyzing the results in the form of:

 (Noisy image)

Problem Analysis:
To implement fuzzy logic, artificial neural network and Bat Algorithm to efficiently

remove impulse noise from images.

The impulse noise removal of an image can be formulated as follows:
Given an input image of an entity, how can we determine a collection of optimized
a result of bat algorithm and how it can be fed to the neural network which will remove impulse
noise from that image and produce a noise-free image as an output of the neural network.

fuzzy logic, artificial neural network and Bat Algorithm
Implementation of all the methods
Training the neural network and feeding the optimal parameters of the neural network
through which satisfactory results can be achieved.
Analyzing the results in the form of:

 (Noise free image

 Fig. 1

8

To implement fuzzy logic, artificial neural network and Bat Algorithm to efficiently

collection of optimized parameters as
a result of bat algorithm and how it can be fed to the neural network which will remove impulse

t of the neural network.

fuzzy logic, artificial neural network and Bat Algorithm
the optimal parameters of the neural network

free image)

9

3. Review of Literature
 Impulse noise corruption is very common in digital images. Impulse noise is always

independent and uncorrelated to the image pixels and is randomly distributed over the image.
Hence unlike Gaussian noise, for an impulse noise corrupted image all the image pixels are
not noisy, a number of image pixels will be noisy and the rest of pixels will be noise free.
There are different types of impulse noise namely salt and pepper type of noise and random
valued impulse noise.[1]

 Definition and Applications of a Fuzzy Image Processing Scheme.[3]
 In this paper, a novel two-stage noise removal algorithm to deal with impulse noise is

proposed. In the first stage, an adaptive two-level feed forward neural network (NN) with a
back propagation training algorithm was applied to remove the noise cleanly and keep the
uncorrupted information well. In the second stage, the fuzzy decision rules inspired by the
human visual system (HVS) are proposed to classify the image pixels into human perception
sensitive class and non-sensitive class, and to compensate the blur of the edge and the
destruction caused by the median filter.[11]

 Image enhancement plays a vital role in various applications. There are many techniques to
remove the noise from the image and produce the clear visual of the image. Moreover, there
are several filters and image smoothing techniques available in the literature. All these
available techniques have certain limitations. Recently, neural networks are found to be a
very efficient tool for image enhancement. A novel two-stage noise removal technique for
image enhancement and noise removal is proposed in this paper. In noise removal stage,
Adaptive Neuro-Fuzzy Inference System (ANFIS) with a Modified Levenberg-Marquardt
training algorithm was used to eliminate the impulse noise.[6]

 A new method for de-noising remote-sensing images based on partial differential equations
(PDEs) is proposed. The method employs the similarity between the different band images in
a multi-component image. Initially, one of the noise-free images in multi-component remote-
sensing images as a prior is introduced into the PDE de-noising method. To make use of the
priors of the noise-free image in de-noising, we construct a new smoothing term for the PDE
so as to compute the total variation.[7]

 Evolutionary neural fuzzy filters are a new class of nonlinear filters for image processing.
The original network structure of these filters adopts fuzzy reasoning in order to cancel noise
without destroying fine details and textures. The learning method based on the Genetic
Algorithms yields very satisfactory results within a few generations. Experimental results
have shown that evolutionary neural fuzzy filters are very effective in removing impulse
noise from highly corrupted images and significantly outperform conventional techniques.
This chapter aims at providing a detailed description of the network architecture of these
filters focusing on fuzzy set-based operations, encoding schemes and training procedures.[1]

10

 Metaheuristic algorithms such as particle swarm optimization, fire fly algorithm and harmony
search are now becoming powerful methods for solving many tough optimization problems.
In this paper, we propose a new met heuristic method, the Bat Algorithm, based on the
echolocation behavior of bats. We also intend to combine the advantages of existing
algorithms into the new bat algorithm. After a detailed formulation and explanation of its
implementation, we will then compare the proposed algorithm with other existing algorithms,
including genetic algorithms and particle swarm optimization. Simulations show that the
proposed algorithm seems much superior to other algorithms, and further studies are also
discussed.[4]

11

4. Network Structure for impulse noise removal:

Suppose we deal with images having L gray levels. Let x(n) be the pixel luminance at location
n=[n1,n2] in the noisy image and let x1(n), x2(n),…,x8(n) be the luminance values of eight
neighboring pixels as shown below

X1(n) X2(n) X3(n)
X8(n) X(n) X4(n)
X7(n) X6(n) X5(n)

Fig 2. Pixels belonging to a 3x3 neighborhood

Fig 3. Network Architecture

Figure 3 denotes the neural structure of the evolutionary fuzzy filter. Square denotes the nodes
that perform fuzzy set-based operations. Circles denote minimum and maximum operators. The
filter is formed by two symmetrical sub-networks that aim at detecting positive and negative
noise pulses respectively.

12

Layer 1(fuzzification layer): This layer is named as fuzzification layer because it simply
performs fuzzification of the input window and passes the result on to the next layer. The node
expression is represented as follows:
ܱ,ଵ ,݅ݔ)݇ܨ݉ = ݇ ;(ݔ = 1,2; ݅ = 1, … … . . ,8 ……………..(1)
where mF1 and mF2 are two membership functions.
݉ிభ(ݔ , (ݔ = (௫ି௫ାିଵ)

ଶ(ିଵ) …………….(2)

݉ிమ(ݔ , (ݔ = (௫ି௫ାିଵ)

ଶ(ିଵ) …………….(3)
0 ݁ݎℎ݁ݓ < ݔ < ܮ − 1 ܽ݊݀ 0 < ݔ < ܮ − 1.
Layer 2.1: Let ܱ,ଶ be the output of the j-th node in the k-th sub-network. The
node function is yielded by:

ܱ,(ଶ)=ܺܣܯୀଵ,….,଼{ݓ, , ܱ,(ଵ)}; ݇ = 1,2; ݆ = 1, … , (4).………..... ܯ
Where M is the number of nodes in each sub-network. Value of M is to be chosen according to
requirement. ݓ, represent the strength of the connection between the nodes of layer 1 and layer
2. Now each connection from layer 1 is directed towards a node of layer 2 whose weight is going
to be either 0 or 1, implying it is a binary weight. More about the binary weight and M is
described later in this paper.
Layer 2.2: This layer receives as input, the output of each of the node of layer 2 and the
minimum of all the inputs is given as output. The node function is represented by the following
equation:

ܱ(ଷ) = ቄܰܫܯ ܱ,(ଶ)ቅ; ݇ = 1,2. ݆ = ݈, . . . , (5).…….……. ܯ

Layer 3: This layer is the final and the output layer. This layer simply evaluates the correction
term and adds it to the original pixel.
(݊)ݕ = (݊)ݔ + ܮ) − ,|0ݕ߂|)ܣܮ݉(݈ 0ݕ߂ ݂݅ (ݔ > 0 `
 = (݊)ݔ − ܮ) − ,|0ݕ߂|)ܣܮ݉(݈ 0ݕ߂ ݂݅ (ݔ < 0

ܹℎ݁0ݕ∆ ݁ݎ = ܮ) − 1)(ଵܱ(ଷ) − ଶܱ(ଷ))

13

 Fig. 4 - Fuzzy set LA.

The shape of fuzzy set LA plays a key role in preserving the image details during the process of
noise removal. Indeed, the smoothing action gradually ranges from full correction to no
correction, depending on the estimated amplitude |Δy0| of a noise pulse. When this amplitude is
large (mLA(|Δy0|)== 1), full correction is produced. When this amplitude is small (mLA(|Δy0| <<
1), the filtering action is further reduced. In fact, the smaller the value of |Δy0| the more uncertain
we can be that the processed pixel really represents a noise pulse. The cancellation of noise can
be improved by enabling the removal of small-amplitude noise pulses when the pixel luminance
x(n) is not medium. This effect can be easily achieved by varying the slope of fuzzy set LA as
follows: a0=a'1 mMD(x), where MD (medium) is a trapezoid-shaped fuzzy set centered on L/2
(Fig.5) and a'l =a1

Fig.5 - Fuzzy set MD.

According to the network structure described in the previous section, the filtering behavior
depends on the choice of 8M weights {Wi,j} and three fuzzy set parameters a1, a2 and a3.
The correct choice of the weights of the connections between layer1 and layer2 will determine
the efficiency of the network. So, the weights are determined with help of Bat Algorithm. Also

14

the number of weights is dependent on the number of nodes in layer 2 i.e. M. As evident from
equation 4, each output from layer 1 is multiplied with its respective
connectionsweightinlayer2.Forexamplesupposethenumber of nodes in layer 2.1 is 4. This implies
that the number of connection from layer 1 to 2 will be 8*4=32 thus there will be 32 binary
weights required. The first 8 weights are for the connections from layer 1 to the first node of
layer 2.1 similarly the second 8 weights are intended for the second node of layer 2.1 and so on.
 BAT ALGORITHM: Interesting echolocation behavior of bats has been observed by Xin-She
Yang and developed into an efficient optimization algorithm in huge search spaces. Bat
algorithm has three generalized rules; they are:
1. All bats use echolocation to sense distance, and they also know the difference between food/
prey and background barriers in some magical way.
2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin , varying
wavelength and loudness A0 to search for prey. They can automatically adjust the wavelength of
their emitted pulses and adjust the rate of pulse emission r [01] depending on the proximity of
the target.
3. Although the loudness can vary in many ways, here it is assumed that the loudness varies from
a large (positive) A0 to a minimum constant value ܣ. Main steps of the algorithm are given
below: 1. Initialization; Repeat 2. Generation of new solutions 3. Local searching; 4. Generation
of a new solution by flying randomly; 5. Finding the current best solution; until (requirements are
met). In BA algorithm, initialization of the bat population is performed randomly. Generating
new solutions is performed by moving virtual bats according to the following equations:

݂ = ݂ + (݂௫ − ݂) (6)
௧ݒ = ௧ݒ − 1 + ௧ݔ) − ݔ ∗) ݂ (7)
where β€[01] is a random vector drawn from a uniform distribution. Here x* is the current
global best location (solution) which is located after comparing all the solutions among all the
bats. Initially, each bat is randomly assigned a frequency which is drawn uniformly from
[݂௫ , ݂].
A random walk with direct exploitation is used for the local search that modifies the current best
solution according to the equation:
௪ݔ = ௗݔ + ௧ …......(8)ܣ
where [01] a random number, while At is the average loudness of all the bats at this time step.
Bat Algorithm requires an objective function which it is going to optimize. For our problem it is
clear that we are reducing noise. So lower the mean square error the better. Thus,
ܨ = ∑ (ݕ(݊) − ଶ (9)((݊)ݏ
Here y(n) is the processed pixel and s(n) is the original, noise free pixel.

15

5. Problem Discussion:
Image noise filtering presents a challenging problem in the field of image analysis and as such
has received a great deal of attention over the last few years because of its many applications in
various domains. Experimental results have shown that evolutionary neural fuzzy filters are very
effective in removing impulse noise from highly corrupted images and significantly outperform
conventional techniques. This paper aims at providing a detailed description of the network
architecture of these filters focusing on fuzzy set-based operations, encoding schemes and
training procedures. It also mentions some of the algorithms related to this purpose, especially
the bat algorithm proposed by Xin-She Yang . A detailed architecture of a neuro-fuzzy technique
for image filtering that uses Bat Algorithm (BA) for the parameter optimization of the neural
network and its learning has been mentioned in a lucid manner.
Impulse noise removal using the proposed method:
Since reducing image noise presents a classical image processing problem, a great number of
methods to reduce it have been proposed. In some methods every pixel in the image is restored
regardless of whether it was originally noisy or not. The general scheme of this type of filtering
is the use of a mask which is normally centered around the pixel of interest for computational
reasons. The mask is used to sweep the image and perform some operations with the pixels
inside it in order to obtain the reconstruction value. The main advantage of our project is its
simplicity, especially when the probability of noise is high. None of the methods proposed in the
literature presents a better performance in all scenarios, that is, for different added noise ratios or
for all the images evaluated.

16

6. Implementation of Network Structure Using Bat
Algorithm:

The number of nodes in layer 2.1 is fixed to be M. Thus we will be requiring M*8+3
parameters for a1, a2, a3 to be optimized using BA. For training of the neural network we
need to follow these steps.
Step 1: Input the noisy image and the original image.
Step 2: Repeat step-3 to step 7 till no change in objective function is observed or number
of iterations completes.
Step 3: Generate new solutions by the Eq. (5), Eq. (6) and Eq. (7).
Step 4: if rand > ri then random walk around one of best solutions.
Step 5: Generate a new solution by flying randomly and calculate F. Calculation of F will
require calling of the neural network.
Step 6: If rand < Ai and F(xi) < F(xi∗)then accept new solutions.
Step 7: Find the current best x∗.
Step 8: Store the best x∗ this implies the best and optimized parameters for the neural
network.
Now, to remove noise from an image using a trained neural network we need to follow
these steps:
Step 1: Input the noisy image.
Step 2: For each 3x3 window of the noisy image as shown in figure 1, repeat step 3 step
5
Step 3: Fuzzify the window using equation (1).
Step 4: Evaluate the maximum and minimum operations of layer 2.
Step 5: Evaluate the correction term and add it to the noisy pixel.
Step 6: Display the noise free image as output.

7. Results & Discussion
Here, we have trained the neural network for 40 generations, each generation having a
population size of 40. The network structure had 8 nodes in level 2.1 meaning M=8. It is
evident from the network architecture shown in figure 3 that it will require 8*M that
8*8=64 weights to be optimized.
total of 67 parameters would be required to be optimized by the bat algorithm. To avoid such
huge number of parameter what we tried to do is we optimized only two
is a total of 16 weights and remaining 3 parameter for a
parameter.
Now we take the first 8 parameters. These form the connection weights between level 1 and
first node of level 2.1. Now we
weights that form a connection between level 1 and 2md node of level2.1, similarly we again
rotate is by 180 degree and 270 degree to form the connection between layer 1 and 2
node of layer 2.1. Same is repeated with the next set of 8 parameters to get the total of 64
weights and 3 parameter for a
At the end of each generation
We are feeding lena.jpg and cameraman
giving the best result of each generation

Lena.jpg

 (1)

& Discussion:
we have trained the neural network for 40 generations, each generation having a

The network structure had 8 nodes in level 2.1 meaning M=8. It is
evident from the network architecture shown in figure 3 that it will require 8*M that
8*8=64 weights to be optimized. Now having with the 64 weights and additional 3, that is a
total of 67 parameters would be required to be optimized by the bat algorithm. To avoid such
huge number of parameter what we tried to do is we optimized only two set of 8 weights that
is a total of 16 weights and remaining 3 parameter for a1,a2,a3, reducing it to a total of 19
Now we take the first 8 parameters. These form the connection weights between level 1 and

Now we rotate these eight weights by 90 degree to get another set of
weights that form a connection between level 1 and 2md node of level2.1, similarly we again
rotate is by 180 degree and 270 degree to form the connection between layer 1 and 2

. Same is repeated with the next set of 8 parameters to get the total of 64
a1,a2,a3.

At the end of each generation for all the 40 generations, the best result was shown as output.
We are feeding lena.jpg and cameraman.tif as input and among the series of images, we are
giving the best result of each generation.

 (2)

17

we have trained the neural network for 40 generations, each generation having a
The network structure had 8 nodes in level 2.1 meaning M=8. It is

evident from the network architecture shown in figure 3 that it will require 8*M that is
Now having with the 64 weights and additional 3, that is a

total of 67 parameters would be required to be optimized by the bat algorithm. To avoid such
set of 8 weights that

, reducing it to a total of 19
Now we take the first 8 parameters. These form the connection weights between level 1 and

rotate these eight weights by 90 degree to get another set of
weights that form a connection between level 1 and 2md node of level2.1, similarly we again
rotate is by 180 degree and 270 degree to form the connection between layer 1 and 2nd and 3rd

. Same is repeated with the next set of 8 parameters to get the total of 64
, the best result was shown as output.

.tif as input and among the series of images, we are

(3)

 (5) (6)

 (7) (8)

(3) (4)

(5) (6)

(7) (8)

18

(9)
Fig6. Transition of the image through various generations of the training

Training with Cameraman.tif

(1)

(3) (4)

 (10)

. Transition of the image through various generations of the training
Cameraman.tif

 (2)

 (3) (4)
19

(10)

. Transition of the image through various generations of the training

 (5)

 (7)

 (9)
Fig7. Transition of the image through various generations of the training

 (6)

 (8)

 (10)
of the image through various generations of the training

20

of the image through various generations of the training

The number of images shown here are very less and for only an few generation. It is because
after a few generations the image showed no further improvement, indicating that the optimized
parameters have been acquired and no more optimization is possible. Although sto
instance is not feasible because often the algorithm gets stuck for a few generations at a local
minima and only after a few more generations it again regains its property of minimizing the
optimization function. The graph shown below shows o

Fig 8. Optimization function stuck at local minima
It is evident from the graph that the algorithm was stuck at a local minima soon before
generation 5 and only after generation 5 it began its optimization operation again. Thus to avoid
such a situation the optimization was not stopped before completing its complete generation
count.

of images shown here are very less and for only an few generation. It is because
after a few generations the image showed no further improvement, indicating that the optimized
parameters have been acquired and no more optimization is possible. Although sto
instance is not feasible because often the algorithm gets stuck for a few generations at a local
minima and only after a few more generations it again regains its property of minimizing the
optimization function. The graph shown below shows one of such cases.

Optimization function stuck at local minima

It is evident from the graph that the algorithm was stuck at a local minima soon before
generation 5 and only after generation 5 it began its optimization operation again. Thus to avoid
such a situation the optimization was not stopped before completing its complete generation

21

of images shown here are very less and for only an few generation. It is because
after a few generations the image showed no further improvement, indicating that the optimized
parameters have been acquired and no more optimization is possible. Although stopping at this
instance is not feasible because often the algorithm gets stuck for a few generations at a local
minima and only after a few more generations it again regains its property of minimizing the

It is evident from the graph that the algorithm was stuck at a local minima soon before
generation 5 and only after generation 5 it began its optimization operation again. Thus to avoid
such a situation the optimization was not stopped before completing its complete generation

8. Output With Screenshot
The neural network shown above in figure 3 has been trained on the following noisy images.

During the training a graph of fitness in equation (9) against the number of generation was
plotted as shown in figure 7.

Fig. 10
It is evident from the graph that the optimal value of the parameters were reached by nearly the
5th and the 10th generation although the searching was continued through the rest of the
generation and not stopped to avoid local minima.

Fig. 9(a) Training Image ‘lena.jpg’
having salt and pepper noise of

probability 0.1

creenshots:
al network shown above in figure 3 has been trained on the following noisy images.

During the training a graph of fitness in equation (9) against the number of generation was

Fig. 10 Fitness versus number of generations

It is evident from the graph that the optimal value of the parameters were reached by nearly the
generation although the searching was continued through the rest of the

generation and not stopped to avoid local minima.

(a) Training Image ‘lena.jpg’
having salt and pepper noise of

Fig. 9(b) Training Image
‘Cameraman.tif’ having salt and
pepper noise of probabi

22

al network shown above in figure 3 has been trained on the following noisy images.

During the training a graph of fitness in equation (9) against the number of generation was

It is evident from the graph that the optimal value of the parameters were reached by nearly the
generation although the searching was continued through the rest of the

Fig. 9(b) Training Image
’ having salt and

pepper noise of probability 0.1

23

When the parameters of the neural network after optimization were as follows,
w1=0.246086652000000
w2=0.782806842000000
w3=0.453340060000000
w4=0.00585256500000000
w5=0.608857973000000
w6=0.0358862720000000
w7=0.202246905000000
w8=0.998073431000000
w9=0.0186071980000000
w10=0.337406363000000
w11=0.932139487000000
w12=0.879809250000000
w13=0.0129585350000000
w14=0.448374089000000
w15=0.992009397000000
w16=0.00818476300000000
a1=254.988174800000
a2=107.859023300000
a3=127.236886521634
These when fed into the neural network gave the following results with the test images;

Image1. lena.jpg

Fig 11

Fig.11 (a) Original image

Fig 11 (c) Image after noise reduction

 Fig.11 (b) Salt and pepper noise of
probability 0.1 added to the

original image

24

Salt and pepper noise of

probability 0.1 added to the

Image 2. rice.png

Fig 12 (a).Original image

 Fig

(a).Original image Fig 12 (b) Salt and pepper noise

having probability of 0.1

Fig 12 (c) Image after noise reduction

25

and pepper noise

having probability of 0.1

Image 3. Cameraman.tif

Fig 1

Fig 13 (a). Original image

Fig 13(c) Image after noise reduction

. Original image Fig 13(b). Salt and pepper noise of
probability 0.1 added to the

original image

26

(b). Salt and pepper noise of

probability 0.1 added to the

Image 4 pout.tif

Fig 1

Fig 14(a). Original image

Fig 14(c) Image after noise reduction

. Original image Fig 14(b). Salt and pepper noise of
probability 0.1 added to the

original image

27

(b). Salt and pepper noise of

probability 0.1 added to the

Screenshots:
We have performed the filtering operation with a few other images and good the following
result:
Rice.png:

Coin.png:

We have performed the filtering operation with a few other images and good the following

 Fig. 14. Output Screenshot 1

 Fig .15 . Output Screenshot 2
28

We have performed the filtering operation with a few other images and good the following

Moon.jpg:

Pout.tif:

 Fig.16. Output Screenshot 3

Fig.17

29

30

9. Conclusion / Future Scope of Work
This is to conclude that this project provides an evolutionary neural fuzzy filter for impulse noise
removal. The approach is based on a closed integration of soft-computing techniques. It exploits
the effective representation of knowledge that is a key feature of fuzzy models and is able to
acquire this knowledge from a set of training data. The efficiency of the project is used to
minimize the noise in an image to a great extent without affecting the original information of the
image. Use of neural network gives the algorithm a scope to learn the noise patterns from already
input images and Bat algorithm is able to significantly optimize the parameters. The network
structure of a filter for highly corrupted data has also been described. Experimental results have
shown that evolutionary neural fuzzy filters are able to significantly outperform classical
operators which are based on old conventional techniques.
Future scope:
We intend to extend the application of the project to the following fields.

 Removal of noise from Highly corrupted data i.e. an image with high probability of
noise. Highly corrupted image can be look like this,

 Fig 18. Highly corrupted image.
 Other than impulse noise removal, this project can provide assurance to remove any kind

of noise with higher probabilities.
 Some applications related to medical field such as mammography ,i.e. detection of breast

cancer can implement this to get a clear and noise free detection plate
 This project can also be implemented in the field of underwater photography
 This project can also be implemented to recover old and distorted images.
 This project can also be implemented for color image.

31

10. References
[1] Russo, F. (2000),Image Filtering Using Evolutionary Neural Fuzzy Systems, DEEI -
Universita degli Studi di Trieste Via A. Valerio 10,1-34127 Trieste, Italy.
[2] Harikiran, J., Saichandana,B. and Divakar,B. (2010). Impulse Noise Removal in Digital
Images. International Journal of Computer Applications (0975 8887) Volume 10 No.8.
[3] Chacon, Mario. (2007). Fuzzy Logic for Image Processing: Definition and Applications of a
Fuzzy Image Processing Scheme. Advances in Industrial Control. 101-113. 10.1007/978-1-
84628-469- 4 7.
[4] Yang, X.S. (2011). A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative
Strategies for Optimization. (NICSO). 284, 6574. doi:10.1007/978-3- 642-12538- 6 6.
[5] Sheng-Fu Liang, Shih-Mao Lu, Jyh-Yeong Chang, Member, IEEE, and Chin-Teng (CT) Lin,
Fellow, IEEE. A Novel Two-Stage Impulse Noise Removal Technique Based on Neural
Networks and Fuzzy Decision.
[6] V.Saradhadevi, Research Scholar, Karpagam University, Coimbatore, India. Dr.V.Sundaram,
Director of MCA, Karpagam Engineering College, Coimbatore, India. A Novel Two-Stage
Impulse Noise Removal Technique based on Neural Networks and Fuzzy Decision.
[7] Peng Liu Fang Huang, Guoqing Li Spatial Data Center, Center for Earth Observation and
Digital Earth, Chinese Academy of Sciences , Beijing, China. Remote-Sensing Image Denoising
Using Partial Differential Equations and Auxiliary Images as Priors.
[8] Rafael C.Gonzalez &Richard Woods, Digital Image Processing.
[9] B.Yegnanarayana, Artificial Neural Networks.
[10] Prof. Sankar K. Pal Dr. Ashish Ghosh Prof. Malay K. Kundu Machine Intelligence Unit
Indian Statistical Institute 203 B.T. Road Calcutta 700035 India, Soft Computing for Image
Processing.
[11] Sheng-FuLiang, Shih-MaoLu, Jyh-Yeong Chang and Chin-TengLin. A novel two-stage
impulse noise removal technique based on neural networks and fuzzy decision

32

 11. Appendix
Program Code

Start.m
close all;
clear;
clc;
i=imread('lena.jpg');
OI=imresize(i,[125 125]);
J = imnoise(OI,'salt & pepper',0.2);
figure,imshow(J);
I=double(J);
OI=double(OI);
[F, min, iter]=albat(I,OI);

albat.m
function [best,fmin,N_iter]=albat(Im,OI)
% Default parameters
%if nargin<1, para=[20 5000 0.5 0.5]; end
para=[10 40 0.5 0.5];
n=para(1); % Population size, typically 10 to 40
N_gen=para(2); % Number of generations
A=para(3); % Loudness (constant or decreasing)
r=para(4); % Pulse rate (constant or decreasing)
% This frequency range determines the scalings
% You should change these values if necessary
Qmin=0; % Frequency minimum
Qmax=2; % Frequency maximum
% Iteration parameters
N_iter=0; % Total number of function evaluations
% Dimension of the search variables
d=19; % Number of dimensions
% Lower limit/bounds/ a vector
Lb=zeros(1,d);
% Upper limit/bounds/ a vector
Ub=ones(1,16);
Ub(17)=255;
Ub(18)=(255/2);
Ub(19)=(255/2);
% Initializing arrays
Q=zeros(n,1); % Frequency
v=zeros(n,d); % Velocities

% Initialize the population/solutions

33

for i=1:n,
 Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);
 Fitness(i)=Fun_mod(Sol(i,:),Im,OI);
end
% Find the initial best solution
[fmin,I]=min(Fitness);
%disp(['fmin:',num2str(fmin),'I:',num2str(I)]);
best=Sol(I,:)

% Start the iterations -- Bat Algorithm (essential part) %
for t=1:N_gen,
 t
% Loop over all bats/solutions
 for i=1:n
 Q(i)=Qmin+(Qmin-Qmax)*rand;
 v(i,:)=v(i,:)+(Sol(i,:)-best)*Q(i);
 S(i,:)=Sol(i,:)+v(i,:);
 % Apply simple bounds/limits
 Sol(i,:)=simplebounds(S(i,:),Lb,Ub);

% Sol(i,:)=simplebounds(Sol(i,:),Lb,Ub)
 % Pulse rate
 if rand>r
 % The factor 0.001 limits the step sizes of random walks
 S(i,:)=best+0.001*randn(1,d);
 end
 S(i,:)=simplebounds(S(i,:),Lb,Ub);
% S(i,:);

 % Evaluate new solutions
 Fnew=Fun_mod(S(i,:),Im,OI);

 % Update if the solution improves, or not too loud
 if (Fnew<=Fitness(i)) & (rand<A) ,
 Sol(i,:)=S(i,:);
 Fitness(i)=Fnew;
 end

 % Update the current best solution
 if Fnew<=fmin,
 best=S(i,:);
 fmin=Fnew;
 end
 end
 fmin1(t)=fmin;
 N_iter=N_iter+n;
 fmin
end
ct=1:N_gen;

34

fmin1;
figure,plot(ct,fmin1);
% Output/display
%disp(['Number of evaluations: ',num2str(N_iter)]);
%disp(['Best =',num2str(best),' fmin=',num2str(fmin)]);

% Application of simple limits/bounds
function s=simplebounds(s,Lb,Ub)
 % Apply the lower bound vector
 ns_tmp=s;
 I=ns_tmp<Lb;
 ns_tmp(I)=Lb(I);

 % Apply the upper bound vector
 J=ns_tmp>Ub;
 ns_tmp(J)=Ub(J);
 % Update this new move
 s=ns_tmp;

Fun_mod.m
function z=Fun_mod(u,Im,OI)
I=Im;
OI=double(OI);
w1=u(1);w2=u(2);w3=u(3);w4=u(4);w5=u(5);w6=u(6);w7=u(7);w8=u(8);a1=u(17);a2=u(18)
;a3=u(19);
w9=u(9);w10=u(10);w11=u(11);w12=u(12);w13=u(13);w14=u(14);w15=u(15);w16=u(16);
main;
sizes=size(OI);
z=sum(sum((y-OI).^2));

layer1_2_Net1.m

function
c=layer1_2_Net1(a,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16)
p(1)=(a(1,1)-a(2,2)+256-1)/(2*(256-1));
p(2)=(a(1,2)-a(2,2)+256-1)/(2*(256-1));
p(3)=(a(1,3)-a(2,2)+256-1)/(2*(256-1));
p(4)=(a(2,3)-a(2,2)+256-1)/(2*(256-1));
p(5)=(a(3,3)-a(2,2)+256-1)/(2*(256-1));
p(6)=(a(3,2)-a(2,2)+256-1)/(2*(256-1));
p(7)=(a(3,1)-a(2,2)+256-1)/(2*(256-1));
p(8)=(a(2,1)-a(2,2)+256-1)/(2*(256-1));

d(1)=round(w1)*p(1);
d(2)=round(w2)*p(2);
d(3)=round(w3)*p(3);
d(4)=round(w4)*p(4);
d(5)=round(w5)*p(5);
d(6)=round(w6)*p(6);

35

d(7)=round(w7)*p(7);
d(8)=round(w8)*p(8);

m(1)=max(d);

d(1)=round(w7)*p(1);
d(2)=round(w8)*p(2);
d(3)=round(w1)*p(3);
d(4)=round(w2)*p(4);
d(5)=round(w3)*p(5);
d(6)=round(w4)*p(6);
d(7)=round(w5)*p(7);
d(8)=round(w6)*p(8);

m(2)=max(d);

d(1)=round(w5)*p(1);
d(2)=round(w6)*p(2);
d(3)=round(w7)*p(3);
d(4)=round(w8)*p(4);
d(5)=round(w1)*p(5);
d(6)=round(w2)*p(6);
d(7)=round(w3)*p(7);
d(8)=round(w4)*p(8);

m(3)=max(d);

d(1)=round(w3)*p(1);
d(2)=round(w4)*p(2);
d(3)=round(w5)*p(3);
d(4)=round(w6)*p(4);
d(5)=round(w7)*p(5);
d(6)=round(w8)*p(6);
d(7)=round(w1)*p(7);
d(8)=round(w2)*p(8);

m(4)=max(d);

d(1)=round(w9)*p(1);
d(2)=round(w10)*p(2);
d(3)=round(w11)*p(3);
d(4)=round(w12)*p(4);
d(5)=round(w13)*p(5);
d(6)=round(w14)*p(6);
d(7)=round(w15)*p(7);
d(8)=round(w16)*p(8);

36

m(5)=max(d);

d(1)=round(w15)*p(1);
d(2)=round(w16)*p(2);
d(3)=round(w9)*p(3);
d(4)=round(w10)*p(4);
d(5)=round(w11)*p(5);
d(6)=round(w12)*p(6);
d(7)=round(w13)*p(7);
d(8)=round(w14)*p(8);

m(6)=max(d);

 d(1)=round(w13)*p(1);
d(2)=round(w14)*p(2);
d(3)=round(w15)*p(3);
d(4)=round(w16)*p(4);
d(5)=round(w9)*p(5);
d(6)=round(w10)*p(6);
d(7)=round(w11)*p(7);
d(8)=round(w12)*p(8);

m(7)=max(d);

d(1)=round(w11)*p(1);
d(2)=round(w12)*p(2);
d(3)=round(w13)*p(3);
d(4)=round(w14)*p(4);
d(5)=round(w15)*p(5);
d(6)=round(w16)*p(6);
d(7)=round(w9)*p(7);
d(8)=round(w10)*p(8);

m(8)=max(d);
c=min(m);

layer1_2_Net2.m
function
c=layer1_2_Net2(a,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16)
p(1)=(a(2,2)-a(1,1)+256-1)/(2*(256-1));
p(2)=(a(2,2)-a(1,2)+256-1)/(2*(256-1));
p(3)=(a(2,2)-a(1,3)+256-1)/(2*(256-1));
p(4)=(a(2,2)-a(2,3)+256-1)/(2*(256-1));
p(5)=(a(2,2)-a(3,3)+256-1)/(2*(256-1));
p(6)=(a(2,2)-a(3,2)+256-1)/(2*(256-1));
p(7)=(a(2,2)-a(3,1)+256-1)/(2*(256-1));
p(8)=(a(2,2)-a(2,1)+256-1)/(2*(256-1));

37

d(1)=round(w1)*p(1);
d(2)=round(w2)*p(2);
d(3)=round(w3)*p(3);
d(4)=round(w4)*p(4);
d(5)=round(w5)*p(5);
d(6)=round(w6)*p(6);
d(7)=round(w7)*p(7);
d(8)=round(w8)*p(8);

m(1)=max(d);

 d(1)=round(w7)*p(1);
d(2)=round(w8)*p(2);
d(3)=round(w1)*p(3);
d(4)=round(w2)*p(4);
d(5)=round(w3)*p(5);
d(6)=round(w4)*p(6);
d(7)=round(w5)*p(7);
d(8)=round(w6)*p(8);

m(2)=max(d);

 d(1)=round(w5)*p(1);
d(2)=round(w6)*p(2);
d(3)=round(w7)*p(3);
d(4)=round(w8)*p(4);
d(5)=round(w1)*p(5);
d(6)=round(w2)*p(6);
d(7)=round(w3)*p(7);
d(8)=round(w4)*p(8);

m(3)=max(d);

d(1)=round(w3)*p(1);
d(2)=round(w4)*p(2);
d(3)=round(w5)*p(3);
d(4)=round(w6)*p(4);
d(5)=round(w7)*p(5);
d(6)=round(w8)*p(6);
d(7)=round(w1)*p(7);
d(8)=round(w2)*p(8);

m(4)=max(d);

d(1)=round(w9)*p(1);
d(2)=round(w10)*p(2);
d(3)=round(w11)*p(3);
d(4)=round(w12)*p(4);
d(5)=round(w13)*p(5);

38

d(6)=round(w14)*p(6);
d(7)=round(w15)*p(7);
d(8)=round(w16)*p(8);

m(5)=max(d);

 d(1)=round(w15)*p(1);
d(2)=round(w16)*p(2);
d(3)=round(w9)*p(3);
d(4)=round(w10)*p(4);
d(5)=round(w11)*p(5);
d(6)=round(w12)*p(6);
d(7)=round(w13)*p(7);
d(8)=round(w14)*p(8);

m(6)=max(d);

 d(1)=round(w13)*p(1);
d(2)=round(w14)*p(2);
d(3)=round(w15)*p(3);
d(4)=round(w16)*p(4);
d(5)=round(w9)*p(5);
d(6)=round(w10)*p(6);
d(7)=round(w11)*p(7);
d(8)=round(w12)*p(8);

m(7)=max(d);

d(1)=round(w11)*p(1);
d(2)=round(w12)*p(2);
d(3)=round(w13)*p(3);
d(4)=round(w14)*p(4);
d(5)=round(w15)*p(5);
d(6)=round(w16)*p(6);
d(7)=round(w9)*p(7);
d(8)=round(w10)*p(8);

m(8)=max(d);
c=min(m);

layer4_mod.m
function [Op4,del_y0,t1]=layer4_mod(O1,O2,I,a1,a2,a3)
L=256;
del_y0=(L-1)*(O1-O2);
sizes=size(O1);
X=zeros(sizes(1),sizes(2));
X1=reshape(X,1,sizes(1)*sizes(2));
I1=reshape(I,1,sizes(1)*sizes(2));
del_y01=reshape(del_y0,1,sizes(1)*sizes(2));

39

t1=(L-1)*(m_la(abs(del_y01),I,a1,a2,a3));
for i=1:sizes(1)*sizes(2)
 if del_y01(i)>=0
 X1(i)=I1(i)+t1(i);
 else
 X1(i)=I1(i)-t1(i);
 end
end
Op4=reshape(X1,sizes(1),sizes(2));
end

m_la.m
function mla=m_la(delY0,I,a1,a2,a3)
L=256;
sizes=size(I);
mla=zeros(sizes(1),sizes(2));
len=sizes(1)*sizes(2);
I=reshape(I,1,len);
mla=reshape(mla,1,len);
mmd=m_md(I,a2,a3);
a0=a1*mmd;

for i=1:len
if delY0(i)<=a0(i)
 mla(i)=0;
elseif delY0(i)<=a1
 mla(i)=(a1*(delY0(i)-a0(i))/((L-1)*(a1-a0(i))));
else
 mla(i)=delY0(i)/(L-1);
end
end

m_md.m
function mmd=m_md(I,a2,a3)
L=256;
sizes=size(I);
mmd=zeros(1,sizes(2));
if a2<a3
 t=a3;
 a3=a2;
 a2=t;
end
for i=1:sizes(1)*sizes(2)

 if I(i)>(L/2)
 I(i)=L-I(i);
 end
 if I(i)<(L/2)-a2
 mmd(i)=0;

40

 elseif I(i)<(L/2)-a3
 mmd(i)=(I(i)-L/2+a2)/(a2-a3);
 else
 mmd(i)=1;
 end
end

main1.m
I=imread('pout.tif');
I=imresize(I,[256 256]);
figure, imshow(I);
I=imnoise(I,'salt & pepper',0.1);
figure, imshow(I);
I=double(I);
sizes=size(I);
w1=F(1);
w2=F(2);
w3=F(3);
w4=F(4);
w5=F(5);
w6=F(6);
w7=F(7);
w8=F(8);
w9=F(9);
w10=F(10);
w11=F(11);
w12=F(12);
w13=F(13);
w14=F(14);
w15=F(15);
w16=F(16);
a1=F(17);
a2=F(18);
a3=F(19);
Run_layer1_2_Net1;
Run_layer1_2_Net2;
 [y,del_y0,t1]=(layer4_mod(O1,O2,I,a1,a2,a3));
y1=reshape(y,sizes(1),sizes(2));
figure,imshow(y1,[]);

41

Matlab functions used:

[Platform: Matlab 2015a
Version: MATLAB 8.5]

1. imread:

Read image from graphics file.
Syntax:
A=imread(filename)
Description:
A=imread(filename) reads the image from the file specified by filename, inferring the
format of the file from its contents. If filename is a multi-image file, then imread reads the
first image in the file.

2. imresize:
Resize image.
Syntax:
B = imresize(A,scale)
Description:
B =imresize(A,scale) returns image B that is scale times the size of A. The input
image A can be a grayscale, RGB, or binary image. If A has more than two
dimensions, imresize only resizes the first two dimensions. If scale is in the range [0,
1], B is smaller than A. If scale is greater than 1, B is larger than A. By
default, imresize uses bicubic interpolation.

3. imnoise:
Add noise to image.
Syntax:
J = imnoise(I, 'salt & pepper', d)
Description:
J = imnoise(I, 'salt & pepper', d) adds salt and pepper noise, where d is the noise density.
This affects approximately d*numel(I) pixels.

4. imshow:
Display image
Syntax:
imshow(I)
Description:
imshow(I) displays the grayscale image I in a figure. imshow optimizes figure, axes, and
image object properties for image display

42

5. reshape:
reshape array
Syntax:
B = reshape(A,sz1,...,szN)
Description:
B = reshape(A,Sz) reshapes A using the size vector, sz, to define size(B). For
example, reshape(A,[2,3]) reshapes A into a 2-by-3 matrix. sz must contain at least 2
elements, and prod(sz) must be the same as numel(A).

6. rand:
Uniformly distributed random numbers.
Syntax:
X = rand(sz1,...,szN)
Description:
X = rand(sz1,...,szN) returns an sz1-by-...-by-szN array of random numbers
where sz1,...,szN indicate the size of each dimension. For example, rand(3,4) returns a 3-
by-4 matrix.

7. plot:
2-D line plot.
Syntax:
plot(X,Y)
Description:
plot(X,Y) creates a 2-D line plot of the data in Y versus the corresponding values in X.

 If X and Y are both vectors, then they must have equal length. The plot function plots Y
versus X.

 If X and Y are both matrices, then they must have equal size. The plot function plots
columns of Y versus columns of X.

 If one of X or Y is a vector and the other is a matrix, then the matrix must have
dimensions such that one of its dimensions equals the vector length. If the number of
matrix rows equals the vector length, then the plot function plots each matrix column
versus the vector. If the number of matrix columns equals the vector length, then the
function plots each matrix row versus the vector. If the matrix is square, then the function
plots each column versus the vector.

 If one of X or Y is a scalar and the other is either a scalar or a vector, then the plot
function plots discrete points. However, to see the points you must specify a marker
symbol, for example, plot(X, Y, 'o').

8. size:

Array size.
Syntax:

43

sz = size(A)
Description:
sz = size(A) returns a row vector whose elements contain the length of the corresponding
dimension of A. For example, if A is a 3-by-4 matrix, then size(A) returns the vector [3 4].

9. zeros:
Create array of all zeros.
Syntax:
X = zeros(n)
Description:
X = zeros(n) returns an n-by-n matrix of zeros.

10. ones:
Create array of all ones.
Syntax:
X = ones(n)
Description:
X = ones(n) returns an n-by-n matrix of ones.

11. min:
Minimum elements of an array.
Syntax:
M = min(A)
Description:
M = min(A) returns the minimum elements of an array.

 If A is a vector, then min(A) returns the minimum of A.
 If A is a matrix, then min(A) is a row vector containing the minimum value of each

column.
 If A is a multidimensional array, then min(A) operates along the first array dimension

whose size does not equal 1, treating the elements as vectors. The size of this dimension
becomes 1 while the sizes of all other dimensions remain the same. If A is an empty array
with first dimension 0, then min(A) returns an empty array with the same size as A.

12. max
Maximum elements of an array.
Syntax:
M = max(A)
Description: M = max(A) returns the maximum elements of an array.

 If A is a vector, then max(A) returns the maximum of A.
 If A is a matrix, then max(A) is a row vector containing the maximum value of each

column.
 If A is a multidimensional array, then max(A) operates along the first array dimension

whose size does not equal 1, treating the elements as vectors. The size of this dimension

44

becomes 1 while the sizes of all other dimensions remain the same. If A is an empty array
whose first dimension has zero length, then max(A) returns an empty array with the same
size as A.

13. abs:
Syntax:
Y = abs(X)
Description:
Y=abs(X) returns the absolute value of each element in array X. If X is
complex, abs(X) returns the complex magnitude.

