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 1. Introduction   
 
Image noise is a random variation of brightness and color information in an image and is usually 
an aspect of electronic noise. Image noise can range from almost imperceptible specks on a 
digital photograph taken in good light, to optical and radio-astronomical images that are almost 
entirely noise, from which a small amount of information can be derived by sophisticated 
processing. Such a noise level would be unacceptable in a photograph since it would be 
impossible even to determine the subject. Noise can seriously affect quality of digital images. 
Noise removal is one of the most important areas within digital image processing. One type of 
noise that can appear in images is impulse noise, which can be produced during image 
acquisition, storage, or transmission and can affect later stages of processing if not removed 
properly while preserving the details . This problem arises in many fields, from medical imaging 
to the analysis of satellite images. Impulse noise appears when some of the pixels in the image 
are replaced by outliers while the rest remain unchanged. Outliers can have a fixed minimum or 
maximum gray-scale value or may vary within that range. The first type is known as “salt and 
pepper” and is the one analyzed in this paper. Fat-tail distributed or "impulsive" noise, 
sometimes called salt-and-pepper noise or spike noise is very common form of corruption. An 
image containing salt-and-pepper noise will have dark pixels in bright regions and bright pixels 
in dark regions. This type of noise can be caused by analog-to-digital-convertor errors, bit errors 
in transmission, etc. Very different from Gaussian noise, the impulse noise is not evenly 
distributed throughout an image but it is randomly arranged, meaning all the image pixels are not 
corrupted but the corruption is scattered all throughout the image. This uncorrelated nature of 
impulse noise makes it a challenging task for identification and de-noising. Fuzzy models can 
represent a very appropriate solution to this problem because uncertainty generally affects the 
process of extracting information from corrupted data.  
Fuzzy logic offers us a powerful tool to represent and process human knowledge in form of 
fuzzy if-then-else rules. Fuzzy sets are a generalization of the classical set theory and its ability 
to capture imperfections has been utilized in various fields over the last few decades. 
Fuzzification of the image makes it easier to identify the correctness of an image pixel by 
comparing it with its neighboring pixels. This mimic of human knowledge through fuzzy logic 
can be utilized more efficiently if human learning could also have been utilized.  
Artificial Neural Networks (ANN) based approaches are best suited for this representation of 
human learning and processing. ANN’s architecture is completely dependent on the goal that is 
intended to achieve. Massive connectivity amongst the neurons makes it more fault tolerant. 
Performance of an ANN is heavily dependent on the selection of appropriate parameters that 
governs the architecture. Parameter selection depends on the efficient search algorithms for 
complex search spaces. Nature inspired Bat Algorithm (BA) introduced in the year 2010 by Xin-
She Yang is a very efficient algorithm for this searching. 
This project aims to implement fuzzy logic, artificial neural network and Bat Algorithm to 
efficiently remove impulse noise from images. 
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Applications of impulse noise-removal from an image: 
Visual information is the most important type of information perceived, processed and 
interpreted by the human brain. One third of the cortical area of the human brain is dedicated to 
visual information processing. Image filtering as a computer-based technology, carries out 
manipulation and interpretation of such visual information, and it plays an increasingly important 
role in many aspects of our daily life, as well as in a wide variety of disciplines and fields in 
science and technology, with applications such as television, photography,  medical diagnosis 
and industrial inspection.  
• Computerized photography (e.g., Photoshop)  
• Space image filtering (e.g., Hubble space telescope images, interplanetary probe images) 
• Clear detection of broken limbs through noise removal from X-ray plates 
• Clear detection of Cancer through noise removal from mammographic plates 
• Recovery of ancient and historical images through noise removal 
• Recovery of distorted images which is required in crime investigation 
• Noise removal of  highly corrupted data 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 



 

2. Problem Analysis
Aim: To implement fuzzy logic, artificial neural network and Bat Algorithm to efficiently 
remove impulse noise from images.
Problem definition: 
The impulse noise removal of an image can be formulated as follows:
Given an input image of an entity, how can we 
a result of bat algorithm and how it can be fed to the neural network which will remove impulse 
noise from that image and produce a noise
Broad Classification: 

 Study and analysis of fuzzy logic, artificial neural network and Bat Algorithm Implementation of all the methods Training the neural network and feeding
through which satisfactory results can be achieved Analyzing the results in the form of:

 
 

                  (Noisy image)  
 
     
 
 
 
 
 

Problem Analysis: 
To implement fuzzy logic, artificial neural network and Bat Algorithm to efficiently 

remove impulse noise from images. 

The impulse noise removal of an image can be formulated as follows: 
Given an input image of an entity, how can we determine a collection of optimized 
a result of bat algorithm and how it can be fed to the neural network which will remove impulse 
noise from that image and produce a noise-free image as an output of the neural network.

fuzzy logic, artificial neural network and Bat Algorithm
Implementation of all the methods 
Training the neural network and feeding the optimal parameters of the neural network 
through which satisfactory results can be achieved. 
Analyzing the results in the form of: 

                          
                   (Noise free image

                Fig. 1 
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To implement fuzzy logic, artificial neural network and Bat Algorithm to efficiently 
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a result of bat algorithm and how it can be fed to the neural network which will remove impulse 

t of the neural network. 

fuzzy logic, artificial neural network and Bat Algorithm 
the optimal parameters of the neural network 
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3. Review of Literature 
 Impulse noise corruption is very common in digital images. Impulse noise is always 

independent and uncorrelated to the image pixels and is randomly distributed over the image. 
Hence unlike Gaussian noise, for an impulse noise corrupted image all the image pixels are 
not noisy, a number of image pixels will be noisy and the rest of pixels will be noise free. 
There are different types of impulse noise namely salt and pepper type of noise and random 
valued impulse noise.[1] 

 Definition and Applications of a Fuzzy Image Processing Scheme.[3]  
 In this paper, a novel two-stage noise removal algorithm to deal with impulse noise is 

proposed. In the first stage, an adaptive two-level feed forward neural network (NN) with a 
back propagation training algorithm was applied to remove the noise cleanly and keep the 
uncorrupted information well. In the second stage, the fuzzy decision rules inspired by the 
human visual system (HVS) are proposed to classify the image pixels into human perception 
sensitive class and non-sensitive class, and to compensate the blur of the edge and the 
destruction caused by the median filter.[11] 

 Image enhancement plays a vital role in various applications. There are many techniques to 
remove the noise from the image and produce the clear visual of the image. Moreover, there 
are several filters and image smoothing techniques available in the literature. All these 
available techniques have certain limitations. Recently, neural networks are found to be a 
very efficient tool for image enhancement. A novel two-stage noise removal technique for 
image enhancement and noise removal is proposed in this paper. In noise removal stage, 
Adaptive Neuro-Fuzzy Inference System (ANFIS) with a Modified Levenberg-Marquardt 
training algorithm was used to eliminate the impulse noise.[6] 

 A new method for de-noising remote-sensing images based on partial differential equations 
(PDEs) is proposed. The method employs the similarity between the different band images in 
a multi-component image. Initially, one of the noise-free images in multi-component remote-
sensing images as a prior is introduced into the PDE de-noising method. To make use of the 
priors of the noise-free image in de-noising, we construct a new smoothing term for the PDE 
so as to compute the total variation.[7] 

 Evolutionary neural fuzzy filters are a new class of nonlinear filters for image processing. 
The original network structure of these filters adopts fuzzy reasoning in order to cancel noise 
without destroying fine details and textures. The learning method based on the Genetic 
Algorithms yields very satisfactory results within a few generations. Experimental results 
have shown that evolutionary neural fuzzy filters are very effective in removing impulse 
noise from highly corrupted images and significantly outperform conventional techniques. 
This chapter aims at providing a detailed description of the network architecture of these 
filters focusing on fuzzy set-based operations, encoding schemes and training procedures.[1] 
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 Metaheuristic algorithms such as particle swarm optimization, fire fly algorithm and harmony 
search are now becoming powerful methods for solving many tough optimization problems. 
In this paper, we propose a new met heuristic method, the Bat Algorithm, based on the 
echolocation behavior of bats. We also intend to combine the advantages of existing 
algorithms into the new bat algorithm. After a detailed formulation and explanation of its 
implementation, we will then compare the proposed algorithm with other existing algorithms, 
including genetic algorithms and particle swarm optimization. Simulations show that the 
proposed algorithm seems much superior to other algorithms, and further studies are also 
discussed.[4] 
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4. Network Structure for impulse noise removal: 
 

Suppose we deal with images having L gray levels. Let x(n) be the pixel luminance at location 
n=[n1,n2] in the noisy image and let x1(n), x2(n),…,x8(n) be the luminance values of eight 
neighboring pixels as shown below  

X1(n)  X2(n)  X3(n)  
X8(n)  X(n)  X4(n)  
X7(n)  X6(n)  X5(n)  

 
Fig 2. Pixels belonging to a 3x3 neighborhood  

 
 
 
 

  
Fig 3. Network Architecture 

Figure 3 denotes the neural structure of the evolutionary fuzzy filter. Square denotes the nodes 
that perform fuzzy set-based operations. Circles denote minimum and maximum operators. The 
filter is formed by two symmetrical sub-networks that aim at detecting positive and negative 
noise pulses respectively. 
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Layer 1(fuzzification layer): This layer is named as fuzzification layer because it simply 
performs fuzzification of the input window and passes the result on to the next layer. The node 
expression is represented as follows:  
ܱ,ଵ ,݅ݔ)݇ܨ݉  =  ݇ ;(ݔ = 1,2;  ݅ = 1, … … . . ,8                                                          ……………..(1) 
where mF1 and mF2 are two membership functions.  
݉ிభ(ݔ , (ݔ = (௫ି௫ାିଵ)

ଶ(ିଵ)                                                                                    …………….(2) 
 
݉ிమ(ݔ , (ݔ = (௫ି௫ାିଵ)

ଶ(ିଵ)                                                                                         …………….(3)          
0 ݁ݎℎ݁ݓ   < ݔ < ܮ − 1 ܽ݊݀ 0 < ݔ < ܮ − 1. 
Layer 2.1: Let ܱ,ଶ   be the output of the j-th node in the k-th sub-network. The 
node function is yielded by: 
 

ܱ,(ଶ)=ܺܣܯୀଵ,….,଼{ݓ, , ܱ,(ଵ)};  ݇ = 1,2; ݆ = 1, … ,  (4).……….....                                                 ܯ
Where M is the number of nodes in each sub-network. Value of M is to be chosen according to 
requirement. ݓ, represent the strength of the connection between the nodes of layer 1 and layer 
2. Now each connection from layer 1 is directed towards a node of layer 2 whose weight is going 
to be either 0 or 1, implying it is a binary weight. More about the binary weight and M is 
described later in this paper. 
Layer 2.2: This layer receives as input, the output of each of the node of layer 2 and the 
minimum of all the inputs is given as output. The node function is represented by the following 
equation:  

 
ܱ(ଷ) = ቄܰܫܯ  ܱ,(ଶ)ቅ;  ݇ = 1,2. ݆ = ݈, . . . ,  (5).…….…….                                                                 ܯ

 
Layer 3: This layer is the final and the output layer. This layer simply evaluates the correction 
term and adds it to the original pixel. 
(݊)ݕ   = (݊)ݔ   + ܮ) − ,|0ݕ߂|)ܣܮ݉(݈ 0ݕ߂ ݂݅ (ݔ > 0                                             ` 
                                              = (݊)ݔ  − ܮ) − ,|0ݕ߂|)ܣܮ݉(݈ 0ݕ߂ ݂݅ (ݔ < 0 
 

ܹℎ݁0ݕ∆ ݁ݎ = ܮ)  − 1)( ଵܱ(ଷ) − ଶܱ(ଷ))  
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      Fig. 4 - Fuzzy set LA. 

The shape of fuzzy set LA plays a key role in preserving the image details during the process of 
noise removal. Indeed, the smoothing action gradually ranges from full correction to no 
correction, depending on the estimated amplitude |Δy0| of a noise pulse. When this amplitude is 
large (mLA(|Δy0|)== 1), full correction is produced. When this amplitude is small (mLA(|Δy0| << 
1), the filtering action is further reduced. In fact, the smaller the value of |Δy0| the more uncertain 
we can be that the processed pixel really represents a noise pulse. The cancellation of noise can 
be improved by enabling the removal of small-amplitude noise pulses when the pixel luminance 
x(n) is not medium. This effect can be easily achieved by varying the slope of fuzzy set LA as 
follows: a0=a'1 mMD(x), where MD (medium) is a trapezoid-shaped fuzzy set centered on L/2 
(Fig.5) and a'l =a1 

 
Fig.5 - Fuzzy set MD. 

According to the network structure described in the previous section, the filtering behavior 
depends on the choice of 8M weights {Wi,j} and three fuzzy set parameters a1, a2 and a3. 
The correct choice of the weights of the connections between layer1 and layer2 will determine 
the efficiency of the network. So, the weights are determined with help of Bat Algorithm. Also 
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the number of weights is dependent on the number of nodes in layer 2 i.e. M. As evident from 
equation 4, each output from layer 1 is multiplied with its respective 
connectionsweightinlayer2.Forexamplesupposethenumber of nodes in layer 2.1 is 4. This implies 
that the number of connection from layer 1 to 2 will be 8*4=32 thus there will be 32 binary 
weights required. The first 8 weights are for the connections from layer 1 to the first node of 
layer 2.1 similarly the second 8 weights are intended for the second node of layer 2.1 and so on. 
 BAT ALGORITHM: Interesting echolocation behavior of bats has been observed by Xin-She 
Yang and developed into an efficient optimization algorithm in huge search spaces. Bat 
algorithm has three generalized rules; they are:  
1. All bats use echolocation to sense distance, and they also know the difference between food/ 
prey and background barriers in some magical way.  
2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin , varying 
wavelength and loudness A0 to search for prey. They can automatically adjust the wavelength of 
their emitted pulses and adjust the rate of pulse emission r [01] depending on the proximity of 
the target.  
3. Although the loudness can vary in many ways, here it is assumed that the loudness varies from 
a large (positive) A0 to a minimum constant value ܣ. Main steps of the algorithm are given 
below: 1. Initialization; Repeat 2. Generation of new solutions 3. Local searching; 4. Generation 
of a new solution by flying randomly; 5. Finding the current best solution; until (requirements are 
met). In BA algorithm, initialization of the bat population is performed randomly. Generating 
new solutions is performed by moving virtual bats according to the following equations:  

݂  = ݂ + ( ݂௫  −  ݂)                 ..........(6) 
௧ݒ  = ௧ݒ − 1 + ௧ݔ)  − ݔ ∗) ݂                       ...........(7)  
where β€[01 ] is a random vector drawn from a uniform distribution. Here x* is the current 
global best location (solution) which is located after comparing all the solutions among all the 
bats. Initially, each bat is randomly assigned a frequency which is drawn uniformly from 
[ ݂௫ , ݂ ]. 
A random walk with direct exploitation is used for the local search that modifies the current best 
solution according to the equation:  
௪ݔ  = ௗݔ   +   ௧                   …......(8)ܣ 
where [01] a random number, while At is the average loudness of all the bats at this time step. 
Bat Algorithm requires an objective function which it is going to optimize. For our problem it is 
clear that we are reducing noise. So lower the mean square error the better. Thus, 
ܨ  = ∑ (ݕ(݊)  −  ଶ                ............(9)((݊)ݏ 
Here y(n) is the processed pixel and s(n) is the original, noise free pixel.  
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5. Problem Discussion: 
Image noise filtering presents a challenging problem in the field of image analysis and as such 
has received a great deal of attention over the last few years because of its many applications in 
various domains. Experimental results have shown that evolutionary neural fuzzy filters are very 
effective in removing impulse noise from highly corrupted images and significantly outperform 
conventional techniques. This paper aims at providing a detailed description of the network 
architecture of these filters focusing on fuzzy set-based operations, encoding schemes and 
training procedures. It also mentions some of the algorithms related to this purpose, especially 
the bat algorithm proposed by Xin-She Yang . A detailed architecture of a neuro-fuzzy technique 
for image filtering that uses Bat Algorithm (BA) for the parameter optimization of the neural 
network and its learning has been mentioned in a lucid manner. 
Impulse noise removal using the proposed method: 
Since reducing image noise presents a classical image processing problem, a great number of 
methods to reduce it have been proposed. In some methods every pixel in the image is restored 
regardless of whether it was originally noisy or not. The general scheme of this type of filtering 
is the use of a mask which is normally centered around the pixel of interest for computational 
reasons. The mask is used to sweep the image and perform some operations with the pixels 
inside it in order to obtain the reconstruction value. The main advantage of our project  is its 
simplicity, especially when the probability of noise is high. None of the methods proposed in the 
literature presents a better performance in all scenarios, that is, for different added noise ratios or 
for all the images evaluated. 
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6. Implementation of Network Structure Using Bat 
Algorithm: 

 
The number of nodes in layer 2.1 is fixed to be M. Thus we will be requiring M*8+3 
parameters for a1, a2, a3 to be optimized using BA. For training of the neural network we 
need to follow these steps. 
Step 1: Input the noisy image and the original image. 
Step 2: Repeat step-3 to step 7 till no change in objective function is observed or number 
of     iterations completes. 
Step 3: Generate new solutions by the Eq. (5), Eq. (6) and Eq. (7). 
Step 4: if rand > ri then random walk around one of best solutions. 
Step 5: Generate a new solution by flying randomly and calculate F. Calculation of F will 
require calling of the neural network. 
Step 6: If rand < Ai and F(xi) < F(xi∗)then accept new solutions. 
Step 7: Find the current best x∗. 
Step 8: Store the best x∗ this implies the best and optimized parameters for the neural 
network. 
Now, to remove noise from an image using a trained neural network we need to follow 
these steps: 
Step 1: Input the noisy image. 
Step 2: For each 3x3 window of the noisy image as shown in figure 1, repeat step 3 step 
5 
Step 3: Fuzzify the window using equation (1). 
Step 4: Evaluate the maximum and minimum operations of layer 2. 
Step 5: Evaluate the correction term and add it to the noisy pixel. 
Step 6: Display the noise free image as output. 
 
 
 
         
 



 

7. Results & Discussion
Here, we have trained the neural network for 40 generations, each generation having a 
population size of 40. The network structure had 8 nodes in level 2.1 meaning M=8. It is 
evident from the network architecture shown in figure 3 that it will require 8*M that 
8*8=64 weights to be optimized.
total of 67 parameters would be required to be optimized by the bat algorithm. To avoid such 
huge number of parameter what we tried to do is we optimized only two
is a total of 16 weights and remaining 3 parameter for a
parameter.  
Now we take the first 8 parameters. These form the connection weights between level 1 and 
first node of level 2.1. Now we 
weights that form a connection between level 1 and 2md node of level2.1, similarly we again 
rotate is by 180 degree and 270 degree to form the connection between layer 1 and 2
node of layer 2.1. Same is repeated with the next set of 8 parameters to get the total of 64 
weights and 3 parameter for a
At the end of each generation
We are feeding lena.jpg and cameraman
giving the best result of each generation
 
Lena.jpg 

 
 (1)   

 

& Discussion: 
we have trained the neural network for 40 generations, each generation having a 

The network structure had 8 nodes in level 2.1 meaning M=8. It is 
evident from the network architecture shown in figure 3 that it will require 8*M that 
8*8=64 weights to be optimized. Now having with the 64 weights and additional 3, that is a 
total of 67 parameters would be required to be optimized by the bat algorithm. To avoid such 
huge number of parameter what we tried to do is we optimized only two set of 8 weights that 
is a total of 16 weights and remaining 3 parameter for a1,a2,a3, reducing it to a total of 19 
Now we take the first 8 parameters. These form the connection weights between level 1 and 

Now we rotate these eight weights by 90 degree to get another set of 
weights that form a connection between level 1 and 2md node of level2.1, similarly we again 
rotate is by 180 degree and 270 degree to form the connection between layer 1 and 2

. Same is repeated with the next set of 8 parameters to get the total of 64 
a1,a2,a3. 

At the end of each generation for all the 40 generations, the best result was shown as output. 
We are feeding lena.jpg and cameraman.tif as input and among the series of images, we are 
giving the best result of each generation.  

                          
                              (2) 
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total of 67 parameters would be required to be optimized by the bat algorithm. To avoid such 
set of 8 weights that 

, reducing it to a total of 19 
Now we take the first 8 parameters. These form the connection weights between level 1 and 

rotate these eight weights by 90 degree to get another set of 
weights that form a connection between level 1 and 2md node of level2.1, similarly we again 
rotate is by 180 degree and 270 degree to form the connection between layer 1 and 2nd and 3rd 

. Same is repeated with the next set of 8 parameters to get the total of 64 
, the best result was shown as output.  

.tif as input and among the series of images, we are 

 



 

  
(3)                                          

                    (5)                                                                                      (6)
 

                     (7)                                                                                      (8)

                          
(3)                                                                                       (4) 

                          
(5)                                                                                      (6) 

                           
(7)                                                                                      (8) 

18 

 

 

 
 



 

(9)  
Fig6. Transition of the image through various generations of the training

Training with Cameraman.tif

(1) 

(3)                                                                                      (4)

                          
         (10)

. Transition of the image through various generations of the training
Cameraman.tif 

                                                             (2) 

                         (3)                                                                                      (4) 
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. Transition of the image through various generations of the training 
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      (9)   
Fig7. Transition of the image through various generations of the training

                                                                                                               (6) 
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                     (10) 
of the image through various generations of the training
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of the image through various generations of the training 



 

The number of images shown here are very less and for only an few generation. It is because 
after a few generations the image showed no further improvement, indicating that the optimized 
parameters have been acquired and no more optimization is possible. Although sto
instance is not feasible because often the algorithm gets stuck for a few generations at a local 
minima and only after a few more generations it again regains its property of minimizing the 
optimization function. The graph shown below shows o

Fig 8. Optimization function stuck at local minima
It is evident from the graph that the algorithm was stuck at a local minima soon before 
generation 5 and only after generation 5 it began its optimization operation again. Thus to avoid
such a situation the optimization was not stopped before completing its complete generation 
count. 
   

of images shown here are very less and for only an few generation. It is because 
after a few generations the image showed no further improvement, indicating that the optimized 
parameters have been acquired and no more optimization is possible. Although sto
instance is not feasible because often the algorithm gets stuck for a few generations at a local 
minima and only after a few more generations it again regains its property of minimizing the 
optimization function. The graph shown below shows one of such cases. 

 
Optimization function stuck at local minima 

It is evident from the graph that the algorithm was stuck at a local minima soon before 
generation 5 and only after generation 5 it began its optimization operation again. Thus to avoid
such a situation the optimization was not stopped before completing its complete generation 
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8. Output With Screenshot
The neural network shown above in figure 3 has been trained on the following noisy images.

 
 
 
During the training a graph of fitness in equation (9) against the number of generation was 
plotted as shown in figure 7. 

Fig. 10
It is evident from the graph that the optimal value of the parameters were reached by nearly the 
5th and the 10th generation although the searching was continued through the rest of the 
generation and not stopped to avoid local minima.

Fig. 9(a) Training Image ‘lena.jpg’ 
having salt and pepper noise of 

probability 0.1 

creenshots: 
al network shown above in figure 3 has been trained on the following noisy images.

  

During the training a graph of fitness in equation (9) against the number of generation was 

 
Fig. 10 Fitness versus number of generations 

It is evident from the graph that the optimal value of the parameters were reached by nearly the 
generation although the searching was continued through the rest of the 

generation and not stopped to avoid local minima. 

(a) Training Image ‘lena.jpg’ 
having salt and pepper noise of 

Fig. 9(b) Training Image 
‘Cameraman.tif’ having salt and 
pepper noise of probabi
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al network shown above in figure 3 has been trained on the following noisy images. 

 

During the training a graph of fitness in equation (9) against the number of generation was 

It is evident from the graph that the optimal value of the parameters were reached by nearly the 
generation although the searching was continued through the rest of the 

Fig. 9(b) Training Image 
’ having salt and 

pepper noise of probability 0.1 
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When the parameters of the neural network after optimization were as follows, 
w1=0.246086652000000  
w2=0.782806842000000  
w3=0.453340060000000  
w4=0.00585256500000000  
w5=0.608857973000000  
w6=0.0358862720000000  
w7=0.202246905000000  
w8=0.998073431000000  
w9=0.0186071980000000  
w10=0.337406363000000  
w11=0.932139487000000  
w12=0.879809250000000  
w13=0.0129585350000000  
w14=0.448374089000000  
w15=0.992009397000000  
w16=0.00818476300000000  
a1=254.988174800000  
a2=107.859023300000  
a3=127.236886521634 
These when fed into the neural network gave the following results with the test images; 
 
 
 
 
 



 

Image1. lena.jpg 

 
 

Fig 11 
  

Fig.11 (a) Original image 
  

 
Fig 11 (c) Image after noise reduction 

 Fig.11 (b) Salt and pepper noise of 
probability 0.1 added to the 

original image 
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Salt and pepper noise of 

probability 0.1 added to the 
 



 

Image 2. rice.png 
 

Fig 12 (a).Original image

 
 

    Fig 
 
 
                         

                         
(a).Original image                                             Fig 12 (b) Salt and pepper noise 

having probability of 0.1

 
Fig 12 (c) Image after noise reduction 
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and pepper noise 

having probability of 0.1 



 

Image 3. Cameraman.tif 

 
 
 

Fig 1

  

Fig 13 (a). Original image
  

 
Fig 13(c) Image after noise reduction 

 

. Original image Fig 13(b). Salt and pepper noise of 
probability 0.1 added to the 

original image 
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(b). Salt and pepper noise of 

probability 0.1 added to the 
 



 

Image 4 pout.tif 

  
 
 
 

Fig 1

  

Fig 14(a). Original image
  

  

 
Fig 14(c) Image after noise reduction 

 

. Original image Fig 14(b). Salt and pepper noise of 
probability 0.1 added to the 

original image 
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(b). Salt and pepper noise of 

probability 0.1 added to the 
 



 

Screenshots: 
We have performed the filtering operation with a few other images and good the following 
result: 
Rice.png: 

                 
Coin.png:  

     

We have performed the filtering operation with a few other images and good the following 

               Fig. 14. Output Screenshot 1 

  Fig .15 . Output Screenshot 2 
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We have performed the filtering operation with a few other images and good the following 

 



 

 
Moon.jpg: 

             
Pout.tif: 

     

           Fig.16.  Output Screenshot 3 

       
Fig.17 
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9. Conclusion / Future Scope of Work 
This is to conclude that this project provides an evolutionary neural fuzzy filter for impulse noise 
removal. The approach is based on a closed integration of soft-computing techniques. It exploits 
the effective representation of knowledge that is a key feature of fuzzy models and is able to 
acquire this knowledge from a set of training data. The efficiency of the project is used to 
minimize the noise in an image to a great extent without affecting the original information of the 
image. Use of neural network gives the algorithm a scope to learn the noise patterns from already 
input images and Bat algorithm is able to significantly optimize the parameters.  The network 
structure of a filter for highly corrupted data has also been described. Experimental results have 
shown that evolutionary neural fuzzy filters are able to significantly outperform classical 
operators which are based on old conventional techniques. 
Future scope: 
We intend to extend the application of the project to the following fields. 

 Removal of noise from Highly corrupted data i.e. an image with high probability of 
noise. Highly corrupted image can be look like this, 

 

 Fig 18. Highly corrupted image. 
 Other than impulse noise removal, this project can provide assurance to remove any kind 

of noise with higher probabilities. 
 Some applications related to medical field such as mammography ,i.e. detection of breast 

cancer can implement this to get a clear and noise free detection plate 
 This project can also be implemented in the field of underwater photography 
 This project can also be implemented to recover old and distorted images. 
 This project can also be implemented for color image. 
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   11. Appendix 
Program Code 

Start.m 
close all; 
clear; 
clc; 
i=imread('lena.jpg'); 
OI=imresize(i,[125 125]); 
J = imnoise(OI,'salt & pepper',0.2); 
figure,imshow(J); 
I=double(J); 
OI=double(OI); 
[F, min, iter]=albat(I,OI); 
 
albat.m 
function [best,fmin,N_iter]=albat(Im,OI) 
% Default parameters 
%if nargin<1,  para=[20 5000 0.5 0.5];  end 
para=[10 40 0.5 0.5]; 
n=para(1);      % Population size, typically 10 to 40 
N_gen=para(2);  % Number of generations 
A=para(3);      % Loudness  (constant or decreasing) 
r=para(4);      % Pulse rate (constant or decreasing) 
% This frequency range determines the scalings 
% You should change these values if necessary 
Qmin=0;         % Frequency minimum 
Qmax=2;         % Frequency maximum 
% Iteration parameters 
N_iter=0;       % Total number of function evaluations 
% Dimension of the search variables 
d=19;           % Number of dimensions  
% Lower limit/bounds/ a vector 
Lb=zeros(1,d); 
% Upper limit/bounds/ a vector 
Ub=ones(1,16); 
Ub(17)=255; 
Ub(18)=(255/2); 
Ub(19)=(255/2); 
% Initializing arrays 
Q=zeros(n,1);   % Frequency 
v=zeros(n,d);   % Velocities 
  
% Initialize the population/solutions 
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for i=1:n, 
  Sol(i,:)=Lb+(Ub-Lb).*rand(1,d); 
  Fitness(i)=Fun_mod(Sol(i,:),Im,OI); 
end 
% Find the initial best solution 
[fmin,I]=min(Fitness); 
%disp(['fmin:',num2str(fmin),'I:',num2str(I)]); 
best=Sol(I,:) 
 
% Start the iterations -- Bat Algorithm (essential part)  % 
for t=1:N_gen,  
    t 
% Loop over all bats/solutions 
        for i=1:n 
          Q(i)=Qmin+(Qmin-Qmax)*rand; 
          v(i,:)=v(i,:)+(Sol(i,:)-best)*Q(i); 
          S(i,:)=Sol(i,:)+v(i,:); 
          % Apply simple bounds/limits 
         Sol(i,:)=simplebounds(S(i,:),Lb,Ub); 
           
%           Sol(i,:)=simplebounds(Sol(i,:),Lb,Ub) 
          % Pulse rate 
          if rand>r 
          % The factor 0.001 limits the step sizes of random walks  
              S(i,:)=best+0.001*randn(1,d); 
          end 
          S(i,:)=simplebounds(S(i,:),Lb,Ub); 
%           S(i,:); 
  
     % Evaluate new solutions 
           Fnew=Fun_mod(S(i,:),Im,OI); 
            
     % Update if the solution improves, or not too loud 
           if (Fnew<=Fitness(i)) & (rand<A) , 
                Sol(i,:)=S(i,:); 
                Fitness(i)=Fnew; 
           end 
  
          % Update the current best solution 
          if Fnew<=fmin, 
                best=S(i,:); 
                fmin=Fnew; 
          end 
        end 
        fmin1(t)=fmin; 
        N_iter=N_iter+n; 
        fmin 
end 
ct=1:N_gen; 
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fmin1; 
figure,plot(ct,fmin1); 
% Output/display 
%disp(['Number of evaluations: ',num2str(N_iter)]); 
%disp(['Best =',num2str(best),' fmin=',num2str(fmin)]); 
  
% Application of simple limits/bounds 
function s=simplebounds(s,Lb,Ub) 
  % Apply the lower bound vector 
  ns_tmp=s; 
  I=ns_tmp<Lb; 
  ns_tmp(I)=Lb(I); 
   
  % Apply the upper bound vector  
  J=ns_tmp>Ub; 
  ns_tmp(J)=Ub(J); 
  % Update this new move  
  s=ns_tmp; 
 
Fun_mod.m 
function z=Fun_mod(u,Im,OI) 
I=Im; 
OI=double(OI); 
w1=u(1);w2=u(2);w3=u(3);w4=u(4);w5=u(5);w6=u(6);w7=u(7);w8=u(8);a1=u(17);a2=u(18)
;a3=u(19); 
w9=u(9);w10=u(10);w11=u(11);w12=u(12);w13=u(13);w14=u(14);w15=u(15);w16=u(16); 
main; 
sizes=size(OI); 
z=sum(sum((y-OI).^2)); 
 
layer1_2_Net1.m 
 
function 
c=layer1_2_Net1(a,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) 
p(1)=(a(1,1)-a(2,2)+256-1)/(2*(256-1)); 
p(2)=(a(1,2)-a(2,2)+256-1)/(2*(256-1)); 
p(3)=(a(1,3)-a(2,2)+256-1)/(2*(256-1)); 
p(4)=(a(2,3)-a(2,2)+256-1)/(2*(256-1)); 
p(5)=(a(3,3)-a(2,2)+256-1)/(2*(256-1)); 
p(6)=(a(3,2)-a(2,2)+256-1)/(2*(256-1)); 
p(7)=(a(3,1)-a(2,2)+256-1)/(2*(256-1)); 
p(8)=(a(2,1)-a(2,2)+256-1)/(2*(256-1)); 
  
d(1)=round(w1)*p(1); 
d(2)=round(w2)*p(2); 
d(3)=round(w3)*p(3); 
d(4)=round(w4)*p(4); 
d(5)=round(w5)*p(5); 
d(6)=round(w6)*p(6); 
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d(7)=round(w7)*p(7); 
d(8)=round(w8)*p(8); 
  
m(1)=max(d); 
  
  
d(1)=round(w7)*p(1); 
d(2)=round(w8)*p(2); 
d(3)=round(w1)*p(3); 
d(4)=round(w2)*p(4); 
d(5)=round(w3)*p(5); 
d(6)=round(w4)*p(6); 
d(7)=round(w5)*p(7); 
d(8)=round(w6)*p(8); 
  
m(2)=max(d); 
  
  
d(1)=round(w5)*p(1); 
d(2)=round(w6)*p(2); 
d(3)=round(w7)*p(3); 
d(4)=round(w8)*p(4); 
d(5)=round(w1)*p(5); 
d(6)=round(w2)*p(6); 
d(7)=round(w3)*p(7); 
d(8)=round(w4)*p(8); 
  
m(3)=max(d); 
  
d(1)=round(w3)*p(1); 
d(2)=round(w4)*p(2); 
d(3)=round(w5)*p(3); 
d(4)=round(w6)*p(4); 
d(5)=round(w7)*p(5); 
d(6)=round(w8)*p(6); 
d(7)=round(w1)*p(7); 
d(8)=round(w2)*p(8); 
  
m(4)=max(d); 
  
d(1)=round(w9)*p(1); 
d(2)=round(w10)*p(2); 
d(3)=round(w11)*p(3); 
d(4)=round(w12)*p(4); 
d(5)=round(w13)*p(5); 
d(6)=round(w14)*p(6); 
d(7)=round(w15)*p(7); 
d(8)=round(w16)*p(8); 
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m(5)=max(d); 
  
  
d(1)=round(w15)*p(1); 
d(2)=round(w16)*p(2); 
d(3)=round(w9)*p(3); 
d(4)=round(w10)*p(4); 
d(5)=round(w11)*p(5); 
d(6)=round(w12)*p(6); 
d(7)=round(w13)*p(7); 
d(8)=round(w14)*p(8); 
  
m(6)=max(d); 
  
 d(1)=round(w13)*p(1); 
d(2)=round(w14)*p(2); 
d(3)=round(w15)*p(3); 
d(4)=round(w16)*p(4); 
d(5)=round(w9)*p(5); 
d(6)=round(w10)*p(6); 
d(7)=round(w11)*p(7); 
d(8)=round(w12)*p(8); 
  
m(7)=max(d); 
  
d(1)=round(w11)*p(1); 
d(2)=round(w12)*p(2); 
d(3)=round(w13)*p(3); 
d(4)=round(w14)*p(4); 
d(5)=round(w15)*p(5); 
d(6)=round(w16)*p(6); 
d(7)=round(w9)*p(7); 
d(8)=round(w10)*p(8); 
  
m(8)=max(d); 
c=min(m); 
 
layer1_2_Net2.m 
function 
c=layer1_2_Net2(a,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,w16) 
p(1)=(a(2,2)-a(1,1)+256-1)/(2*(256-1)); 
p(2)=(a(2,2)-a(1,2)+256-1)/(2*(256-1)); 
p(3)=(a(2,2)-a(1,3)+256-1)/(2*(256-1)); 
p(4)=(a(2,2)-a(2,3)+256-1)/(2*(256-1)); 
p(5)=(a(2,2)-a(3,3)+256-1)/(2*(256-1)); 
p(6)=(a(2,2)-a(3,2)+256-1)/(2*(256-1)); 
p(7)=(a(2,2)-a(3,1)+256-1)/(2*(256-1)); 
p(8)=(a(2,2)-a(2,1)+256-1)/(2*(256-1)); 
  



37  

d(1)=round(w1)*p(1); 
d(2)=round(w2)*p(2); 
d(3)=round(w3)*p(3); 
d(4)=round(w4)*p(4); 
d(5)=round(w5)*p(5); 
d(6)=round(w6)*p(6); 
d(7)=round(w7)*p(7); 
d(8)=round(w8)*p(8); 
  
m(1)=max(d); 
  
 d(1)=round(w7)*p(1); 
d(2)=round(w8)*p(2); 
d(3)=round(w1)*p(3); 
d(4)=round(w2)*p(4); 
d(5)=round(w3)*p(5); 
d(6)=round(w4)*p(6); 
d(7)=round(w5)*p(7); 
d(8)=round(w6)*p(8); 
  
m(2)=max(d); 
  
 d(1)=round(w5)*p(1); 
d(2)=round(w6)*p(2); 
d(3)=round(w7)*p(3); 
d(4)=round(w8)*p(4); 
d(5)=round(w1)*p(5); 
d(6)=round(w2)*p(6); 
d(7)=round(w3)*p(7); 
d(8)=round(w4)*p(8); 
  
m(3)=max(d); 
  
d(1)=round(w3)*p(1); 
d(2)=round(w4)*p(2); 
d(3)=round(w5)*p(3); 
d(4)=round(w6)*p(4); 
d(5)=round(w7)*p(5); 
d(6)=round(w8)*p(6); 
d(7)=round(w1)*p(7); 
d(8)=round(w2)*p(8); 
  
m(4)=max(d); 
  
d(1)=round(w9)*p(1); 
d(2)=round(w10)*p(2); 
d(3)=round(w11)*p(3); 
d(4)=round(w12)*p(4); 
d(5)=round(w13)*p(5); 
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d(6)=round(w14)*p(6); 
d(7)=round(w15)*p(7); 
d(8)=round(w16)*p(8); 
  
m(5)=max(d); 
  
 d(1)=round(w15)*p(1); 
d(2)=round(w16)*p(2); 
d(3)=round(w9)*p(3); 
d(4)=round(w10)*p(4); 
d(5)=round(w11)*p(5); 
d(6)=round(w12)*p(6); 
d(7)=round(w13)*p(7); 
d(8)=round(w14)*p(8); 
  
m(6)=max(d); 
  
 d(1)=round(w13)*p(1); 
d(2)=round(w14)*p(2); 
d(3)=round(w15)*p(3); 
d(4)=round(w16)*p(4); 
d(5)=round(w9)*p(5); 
d(6)=round(w10)*p(6); 
d(7)=round(w11)*p(7); 
d(8)=round(w12)*p(8); 
  
m(7)=max(d); 
  
d(1)=round(w11)*p(1); 
d(2)=round(w12)*p(2); 
d(3)=round(w13)*p(3); 
d(4)=round(w14)*p(4); 
d(5)=round(w15)*p(5); 
d(6)=round(w16)*p(6); 
d(7)=round(w9)*p(7); 
d(8)=round(w10)*p(8); 
  
m(8)=max(d); 
c=min(m); 
 
layer4_mod.m 
function [Op4,del_y0,t1]=layer4_mod(O1,O2,I,a1,a2,a3) 
L=256; 
del_y0=(L-1)*(O1-O2); 
sizes=size(O1); 
X=zeros(sizes(1),sizes(2)); 
X1=reshape(X,1,sizes(1)*sizes(2)); 
I1=reshape(I,1,sizes(1)*sizes(2)); 
del_y01=reshape(del_y0,1,sizes(1)*sizes(2)); 
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t1=(L-1)*(m_la(abs(del_y01),I,a1,a2,a3)); 
for i=1:sizes(1)*sizes(2) 
        if del_y01(i)>=0 
            X1(i)=I1(i)+t1(i); 
        else 
            X1(i)=I1(i)-t1(i); 
        end 
end 
Op4=reshape(X1,sizes(1),sizes(2)); 
end 
 
m_la.m 
function mla=m_la(delY0,I,a1,a2,a3) 
L=256; 
sizes=size(I); 
mla=zeros(sizes(1),sizes(2)); 
len=sizes(1)*sizes(2); 
I=reshape(I,1,len); 
mla=reshape(mla,1,len); 
mmd=m_md(I,a2,a3); 
a0=a1*mmd; 
  
for i=1:len 
if delY0(i)<=a0(i) 
    mla(i)=0; 
elseif delY0(i)<=a1 
    mla(i)=(a1*(delY0(i)-a0(i))/((L-1)*(a1-a0(i)))); 
else 
    mla(i)=delY0(i)/(L-1); 
end 
end 
 
m_md.m 
function mmd=m_md(I,a2,a3) 
L=256; 
sizes=size(I); 
mmd=zeros(1,sizes(2)); 
if a2<a3 
        t=a3; 
        a3=a2; 
        a2=t; 
end 
for i=1:sizes(1)*sizes(2) 
     
    if I(i)>(L/2) 
        I(i)=L-I(i);   
    end 
    if I(i)<(L/2)-a2 
        mmd(i)=0; 
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    elseif I(i)<(L/2)-a3 
        mmd(i)=(I(i)-L/2+a2)/(a2-a3); 
    else 
        mmd(i)=1; 
    end 
end 
 
main1.m 
I=imread('pout.tif'); 
I=imresize(I,[256 256]); 
figure, imshow(I); 
I=imnoise(I,'salt & pepper',0.1); 
figure, imshow(I); 
I=double(I); 
sizes=size(I); 
w1=F(1); 
w2=F(2); 
w3=F(3); 
w4=F(4); 
w5=F(5); 
w6=F(6); 
w7=F(7); 
w8=F(8); 
w9=F(9); 
w10=F(10); 
w11=F(11); 
w12=F(12); 
w13=F(13); 
w14=F(14); 
w15=F(15); 
w16=F(16); 
a1=F(17); 
a2=F(18); 
a3=F(19); 
Run_layer1_2_Net1; 
Run_layer1_2_Net2; 
 [y,del_y0,t1]=(layer4_mod(O1,O2,I,a1,a2,a3)); 
y1=reshape(y,sizes(1),sizes(2)); 
figure,imshow(y1,[]); 
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Matlab functions used: 
 

[Platform: Matlab 2015a 
Version: MATLAB 8.5] 
 
1. imread: 

Read image from graphics file. 
Syntax: 
A=imread(filename) 
Description: 
A=imread(filename) reads the image from the file specified by filename, inferring the 
format of the file from its contents. If filename is a multi-image file, then imread reads the 
first image in the file. 
 

2. imresize: 
Resize image. 
Syntax: 
B = imresize(A,scale) 
Description: 
B =imresize(A,scale) returns image B that is scale times the size of A. The input 
image A can be a grayscale, RGB, or binary image. If A has more than two 
dimensions, imresize only resizes the first two dimensions. If scale is in the range [0, 
1], B is smaller than A. If scale is greater than 1, B is larger than A. By 
default, imresize uses bicubic interpolation. 
 

3. imnoise: 
Add noise to image. 
Syntax: 
J = imnoise(I, 'salt & pepper', d) 
Description: 
J = imnoise(I, 'salt & pepper', d) adds salt and pepper noise, where d is the noise density. 
This affects approximately d*numel(I) pixels. 
 

4. imshow: 
Display image 
Syntax: 
imshow(I) 
Description: 
imshow(I) displays the grayscale image I in a figure. imshow optimizes figure, axes, and 
image object properties for image display 
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5. reshape: 
reshape array 
Syntax: 
B = reshape(A,sz1,...,szN) 
Description: 
B = reshape(A,Sz) reshapes A using the size vector, sz, to define size(B). For 
example, reshape(A,[2,3]) reshapes A into a 2-by-3 matrix. sz must contain at least 2 
elements, and prod(sz) must be the same as numel(A). 
 

6. rand: 
Uniformly distributed random numbers. 
Syntax: 
X = rand(sz1,...,szN) 
Description: 
X = rand(sz1,...,szN) returns an sz1-by-...-by-szN array of random numbers 
where sz1,...,szN indicate the size of each dimension. For example, rand(3,4) returns a 3-
by-4 matrix. 
 

7. plot: 
2-D line plot. 
Syntax: 
plot(X,Y) 
Description: 
plot(X,Y) creates a 2-D line plot of the data in Y versus the corresponding values in X. 

 If X and Y are both vectors, then they must have equal length. The plot function plots Y 
versus X. 

 If X and Y are both matrices, then they must have equal size. The plot function plots 
columns of Y versus columns of X. 

 If one of X or Y is a vector and the other is a matrix, then the matrix must have 
dimensions such that one of its dimensions equals the vector length. If the number of 
matrix rows equals the vector length, then the plot function plots each matrix column 
versus the vector. If the number of matrix columns equals the vector length, then the 
function plots each matrix row versus the vector. If the matrix is square, then the function 
plots each column versus the vector. 

 If one of X or Y is a scalar and the other is either a scalar or a vector, then the plot 
function plots discrete points. However, to see the points you must specify a marker 
symbol, for example, plot(X, Y, 'o'). 

 
8. size: 

Array size. 
Syntax: 
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sz = size(A) 
Description: 
sz = size(A) returns a row vector whose elements contain the length of the corresponding 
dimension of A. For example, if A is a 3-by-4 matrix, then size(A) returns the vector [3 4]. 
 

9. zeros: 
Create array of all zeros. 
Syntax: 
X = zeros(n) 
Description: 
X = zeros(n) returns an n-by-n matrix of zeros. 

10. ones: 
Create array of all ones. 
Syntax: 
X = ones(n) 
Description: 
X = ones(n) returns an n-by-n matrix of ones. 
 

11. min: 
Minimum elements of an array. 
Syntax: 
M = min(A) 
Description: 
M = min(A) returns the minimum elements of an array. 

 If A is a vector, then min(A) returns the minimum of A. 
 If A is a matrix, then min(A) is a row vector containing the minimum value of each 

column. 
 If A is a multidimensional array, then min(A) operates along the first array dimension 

whose size does not equal 1, treating the elements as vectors. The size of this dimension 
becomes 1 while the sizes of all other dimensions remain the same. If A is an empty array 
with first dimension 0, then min(A) returns an empty array with the same size as A. 
 

12. max 
Maximum elements of an array. 
Syntax: 
M = max(A) 
Description: M = max(A) returns the maximum elements of an array. 

 If A is a vector, then max(A) returns the maximum of A. 
 If A is a matrix, then max(A) is a row vector containing the maximum value of each 

column. 
 If A is a multidimensional array, then max(A) operates along the first array dimension 

whose size does not equal 1, treating the elements as vectors. The size of this dimension 
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becomes 1 while the sizes of all other dimensions remain the same. If A is an empty array 
whose first dimension has zero length, then max(A) returns an empty array with the same 
size as A. 
 

13. abs: 
Syntax: 
Y = abs(X) 
Description: 
Y=abs(X) returns the absolute value of each element in array X. If X is 
complex, abs(X) returns the complex magnitude. 

 


