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INTRODUCTION: 
 

Within the natural language processing (NLP) community, similarity between texts (text 

similarity, henceforth) is a ubiquitous notion and utilized in a wide range of tasks such as 

question answering (Lin and Pantel, 2001), automatic essay grading (Attali and Burstein, 2006), 

or paraphrase recognition (Dolan et al., 2004). However, text similarity is often used as an 

umbrella term covering quite different phenomena—as opposed to the notion of similarity in 

psychology, which is well studied and captured in formal models such as the set-theoretic 

model (Tversky, 1977) or the geometric model (Widdows, 2004). We argue that the seemingly 

simple question “How similar are two texts?” cannot be answered independently from asking 

what properties make them similar. Goodman (1972) gives a good example for physical objects 

regarding the situation of a baggage check at the airport: While a spectator might compare bags 

by shape, size, or color, the pilot only focuses on a bag’s weight, and a passenger compares 

bags by just destination and ownership. Similarly, texts also have particular inherent properties 

that need to be considered in any attempt to judge their similarity (Bär et al., 2011). Take for 

example two novels by the famous 19th century Russian writer Leo Tolstoy. A reader may 

readily argue that these novels are completely dissimilar due to different plots, people, or 

places. On the other hand, a second reader (e.g. a scholar overseeing texts of disputed 

authorship) may argue that both texts are indeed highly similar because of their stylistic 

similarity. In consequence, text similarity remains a loose notion unless we provide a frame of 

reference. We argue that text similarity cannot be seen as a fixed, axiomatic notion. Rather, we 

need to define in what way two texts are similar. From a human-centered perspective, we say 

that text similarity is a function between two texts t1 and t2 which can be informally 

characterized by the readers’ shared view on the text characteristics along which similarity is to 

be judged. However, to the best of our knowledge the definition of appropriate text 

characteristics for text similarity computation has not been tackled yet in any previous 

research. We thus further argue that text similarity can be judged along different text 

dimensions, i.e. groups of text characteristics which are perceived by humans and for which we 

provide empirical evidence. For example, a scholar in digital humanities may be less interested 

in texts that share similar contents—as opposed to e.g. near-duplicate detection (see Section 

2)—but may rather be looking for text pairs which are similar with respect to their style and 

structure. Throughout this work and in particular in Section 3, we will elaborate on the idea of 

text dimensions and further discuss suitable dimensions for text similarity tasks. 
 



2 

 

Problem Analysis 
 

 

Understanding the intent behind a new question is a natural direction for improving CQA 

services, since it can supply users with more personalized, and more effective CQA 

services tailored to their information needs. For example, we may want to employ 

different strategies to answer questions with different intent. However, current research 

on user intent in search engines cannot be directly applied to CQA services. 

 

In CQA users normally ask natural language questions, which are addressed to 

humans, whereas in Web search users submit keyword queries which are ad-dressed 

to computerized algorithms. More specifically, this leads to the following ve major di 

erences between CQA questions and search engine queries: 

 

1. Many CQA questions are inherently subjective. It has been shown that the 

proportion of Yahoo! Answers oriented to factual question answering is de-

creasing while subjective/complex question answering is gradually increasing . 

 
2. Many CQA questions are socially motivated, as users know that the answers to 

their questions would be coming from other users in the community. In-stead of 

satisfying an information need, such questions are actually about establishing 

social connections (e.g., nding a date), or about generating some empathy (e.g., 

complaining), or just for entertainment purposes (e.g. telling jokes). 

 
3. Even though about 10% of queries submitted to search engines are in question 

format , they are quite di erent from the question patterns used in CQA services. 

For example, instead of using the common question format \What is a", or 

\Where is" in CQA, question queries in search engines are more likely to be the 

formats as \I need", \I want", \Show me". 

 

 

4. CQA questions are more likely to have additional constraints, since they are 

usually longer and more complex than the search engine queries. For example, 

people may ask something in a specific area (e.g., looking for restaurants), or 

within a specific time frame (e.g., seeking for news). 
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5. Compared with search engines, CQA services have richer information, which 

can be used to characterize one's social status. For instance, each user has their 

unique asking and answering history; each question may correspond to a best 

answer, and an upvote/downvote value; furthermore, some user may have the 

pattern of asking questions in several specific topics (e.g., Traveling). This kind 

of rich information can help CQA system to reveal the user intent by providing 

evidence from the user's perspective, in addition to the surface textual features 

from the questions themselves. 

 

Furthermore, even though there have been CQA studies, which investigate strategies 

for one or two dimensions of the user intents, they mostly summarize each question 

as a clear and simple information need (so that the computer can understand it 

easily). Question answering systems are required to understand the user intent at a 

deeper level. In this thesis we investigate potential answers to the following three 

questions regarding user intent in CQA: 

 

How to categorize different user intents in CQA? (taxonomy) 
 
 

How to automatically identify the user intents of a question from a CQA service? 

(classier) How to incorporate the user intents to improve the performance of CQA 

ser-vices? (e.g., question retrieval and answer validation) 

 

Investigating all these questions form a picture depicting the multi-dimensional 

nature of the user intent would help us not only to understand the question more 

deeply but also in a broader context. 
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Review of Literature 

   
 
 
The quest for knowledge is deeply human, and so it is not surprising that practically as 
soon as there were computers, and certainly as soon as there was natural language 
processing, we were trying to use computers to answer textual questions. By the early 
1960s, there were systems implementing the two major modern paradigms of question 
answering—IR-based question answering and knowledge-based question answering to 
answer questions about baseball statistics or scientific facts. Even imaginary computers 
got into the act. Deep Thought, the computer that Douglas Adams invented in The 
Hitchhiker’s Guide to the Galaxy, managed to answer “the Great Question of Life The 
Universe and Everything” (the answer was 42, but unfortunately the details of the 
question were never revealed). More recently, IBM’s Watson question-answering system 
won the TV gameshow Jeopardy! in 2011, beating humans at the task of answering 
questions like WILLIAM WILKINSON’S “AN ACCOUNT OF THE PRINCIPALITIES 
OF WALLACHIA AND MOLDOVIA” INSPIRED THIS AUTHOR’S MOST FAMOUS 
NOVEL1 Although the goal of quiz shows is entertainment, the technology used to 
answer these questions both draws on and extends the state of the art in practical 
question answering, as we will see. Most current question answering systems focus on 
factoid questions. Factoid questions are questions that can be answered with simple 
facts expressed in short text answers. The following factoid questions, for example, can 
be answered with a short string expressing a personal name, temporal expression, or 
location: (28.1) Who founded Virgin Airlines? (28.2) What is the average age of the onset 
of autism? (28.3) Where is Apple Computer based? In this chapter we describe the two 
major modern paradigms to question answering, focusing on their application to factoid 
questions. The first paradigm is called IR-based question answering or sometimes text 
based question answering, and relies on the enormous amounts of information available 
as text on the Web or in specialized collections such as PubMed. Given a user question, 
information retrieval techniques extract passages directly from these documents, guided 
by the text of the question. The method processes the question to determine the likely 
answer type (often a named entity like a person, location, or time), and formulates 
queries to send to a search engine. The search engine returns ranked documents which 
are broken up into suitable passages and reranked. Finally candidate answer strings are 
extracted from the passages and ranked. 
 
In the second paradigm, knowledge-based question answering, we instead build a 
semantic representation of the query. The meaning of a query can be a full predicate 
calculus statement. So the question What states border Texas?—taken from the 
GeoQuery database of questions on U.S. Geography (Zelle and Mooney, 1996)— might 
have the representation: λx.state(x)∧borders(x,texas) Alternatively the meaning of a 
question could be a single relation between a known and an unknown entity. Thus the 
representation of the question When was Ada Lovelace born? could be birth-year (Ada 
Lovelace, ?x). Whatever meaning representation we choose, we’ll be using it to query  
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databases of facts. These might be complex databases, perhaps of scientific facts or 
geospatial information, that need powerful logical or SQL queries. Or these might be 
databases triple stores of simple relations, triple stores like Freebase or DBpedia 
introduced in Chapter 20. Large practical systems like the DeepQA system in IBM’s 
Watson generally are hybrid systems, using both text datasets and structured 
knowledge bases to answer questions. DeepQA extracts a wide variety of meanings 
from the question (parses, relations, named entities, ontological information), and then 
finds large numbers of candidate answers in both knowledge bases and in textual 
sources like Wikipedia or newspapers. Each candidate answer is then scored using a 
wide variety of knowledge sources, such as geospatial databases, temporal reasoning, 
taxonomical classification, and various textual sources. 
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Flow Chart 
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Problem Discussion 
 
 

We have to measure similarity between various group of texts with the help of various 

python libraries and toolkit. One of the is the NLTK module which helps in similarities. 
The NLTK module is a massive tool kit, aimed at helping you with the entire Natural 
Language Processing (NLP) methodology. NLTK will aid you with everything from 
splitting sentences from paragraphs, splitting up words, recognizing the part of speech 
of those words, highlighting the main subjects, and then even with helping your 
machine to understand what the text is all about. In this series, we're going to tackle the 
field of opinion mining, or sentiment analysis. 

 
In our path to learning how to do sentiment analysis with NLTK, we're going to learn 
the following: 
 

o Tokenizing - Splitting sentences and words from the body of text. 
o Part of Speech tagging 
o Removing stop words from the tokenized words 
o Lemmatization of the texts  
o How to tie in Scikit-learn (sklearn) with NLTK 

 
In order to get started, you are going to need the NLTK module, as well as Python. 

 
If you do not have Python yet, go to Python.org and download the latest version of 
Python if you are on Windows. If you are on Mac or Linux, you should be able to run an 
apt-get install python3 

 
 
Now that you have all the things that you need, let's knock out some quick vocabulary: 

 
o Corpus - Body of text, singular. Corpora is the plural of this. Example: A 

collection of medical journals. 

o Lexicon - Words and their meanings. Example: English dictionary. For 

example: To a financial investor, the first meaning for the word "Bull" is 

someone who is confident about the market, as compared to the common 

English lexicon, where the first meaning for the word "Bull" is an animal. 

As such, there is a special lexicon for financial investors,doctors, children, 

mechanics, and so on. 
 

o Token - Each "entity" that is a part of whatever was split up based on rules. 
For examples, each word is a token when a sentence is "tokenized" into 
words. Each sentence can also be a token, if you tokenized the sentences 
out of a paragraph. 

 
 
 
 
 

https://www.python.org/
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System Requirement Specification 

The purpose behind the Software Requirements Specification document is to describe 

the resources and management of those resources used in the design of the Question 

Answering System. The System Requirements and Specifications will further provide 

details regarding the functional and performance related requirements of the 

algorithm. 
  

Hardware and Software Requirements: 
 

The hardware and software requirements of the system which are required for the 

implementation of the project in a system. 
 

  
Software requirements 
Technologies              :  Python 
Tools                            :  NLTK 3.0,Scikit,sklearn 
Domain                       :  Machin Learning,Natural language Processing 
Jdk                               :  Version 1.6 or above 
Python                         :   2.6 or above 

   Operating system      :   Windows 8.1 
                             
Hardware requirements 
 
Processor                   :  Intel Core Processor 
RAM                          :  3 GB (minimum) 
Hard Disk                 :  80 GB(minimum) 
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Implementation Details 
 
Since, text is the most unstructured form of all the available data, various types of noise 
are present in it and the data is not readily analyzable without any pre-processing. The 
entire process of cleaning and standardization of text, making it noise-free and ready for 
analysis is known as text preprocessing. 
It is predominantly comprised of three steps: 

 Noise Removal 
 Lexicon Normalization 
 Object Standardization 

 

1. Tokenization 
These are the words you will most commonly hear upon entering the Natural Language 
Processing (NLP) space, but there are many more that we will be covering in time. With  
that, let's show an example of how one might actually tokenize something into tokens 
with the NLTK module.  
 
from nltk.tokenize import word_tokenize 

 
EXAMPLE_TEXT = "Hello Mr. Smith, how are you doing today? The weather is great, 
and Python is awesome. The sky is pinkish-blue. You shouldn't eat cardboard." 
 
 
 
 
At first, you may think tokenizing by things like words or sentences is a rather trivial 
enterprise. For many sentences it can be. The first step would be likely doing a simple  
.split('. '), or splitting by period followed by a space. Then maybe you would bring in 
some regular expressions to split by period, space, and then a capital letter. The problem 
is that things like Mr. Smith would cause you trouble, and many other things. Splitting 
by word is also a challenge, especially when considering things like concatenations like 
we and  
are to we're. NLTK is going to go ahead and just save you a ton of time with this 
seemingly simple, yet very complex, operation. 
 
The above code will output the sentences, split up into a list of sentences, which you can 
do  
things like iterate through with a for loop. ['Hello Mr. Smith, how are you doing today?', 
'The weather is great, and Python is awesome.', 'The sky is pinkish-blue.', "You 
shouldn't eat cardboard."] 

 
So there, we have created tokens, which are sentences. Let's tokenize by word instead 
this time:  
 
print(word_tokenize(EXAMPLE_TEXT)) 
 
 
 
 

print(sent_tokenize(EXAMPLE_TEXT))  
 
 

https://pythonprogramming.net/regular-expressions-regex-tutorial-python-3/
https://pythonprogramming.net/loop-python-3-basics-tutorial/
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Now our output is: ['Hello', 'Mr.', 'Smith', ',', 'how', 'are', 'you', 'doing', 'today', '?', 'The', 
'weather', 'is', 'great', ',', 'and', 'Python', 'is', 'awesome', '.', 'The', 'sky', 'is', 'pinkish-blue', '.', 
'You', 'should', "n't", 'eat', 'cardboard', '.'] 
There are a few things to note here. First, notice that punctuation is treated as a separate 
token. Also, notice the separation of the word "shouldn't" into "should" and "n't." 
Finally, notice that "pinkish-blue" is indeed treated like the "one word" it was meant to 
be turned into. 
 

2. Stop words removal  
The idea of Natural Language Processing is to do some form of analysis, or processing, 
where the machine can understand, at least to some level, what the text means, says, or 
implies. 
This is an obviously massive challenge, but there are steps to doing it that anyone can 
follow. The main idea, however, is that computers simply do not, and will not, ever 
understand words directly. Humans don't either *shocker*. In humans, memory is 
broken down into electrical signals in the brain, in the form of neural groups that fire in 
patterns. There is a lot about the brain that remains unknown, but, the more we break 
down the human brain to the basic elements, we find out basic the elements really are. 
Well, it turns out computers store information in a very similar way! We need a way to 
get as close to that as possible if we're going to mimic how humans read and understand 
text. Generally, computers use numbers for everything, but we often see directly in 
programming where we use binary signals (True or False, which directly translate to 1 
or 0, which originates directly from either the presence of an electrical signal (True, 1), or 
not (False, 0)). To do this, we need a way to convert words to values, in numbers, or 
signal patterns. The process of converting data to something a computer can understand 
is referred to as "pre-processing." 
 
One of the major forms of pre-processing is going to be filtering out useless data. In 
natural language processing, useless words (data), are referred to as stop words. 

 
Immediately, we can recognize ourselves that some words carry more meaning than 
other words. We can also see that some words are just plain useless and are filler words. 
We use them in the English language, for example, to sort of "fluff" up the sentence so it 
is not so strange sounding. An example of one of the most common, unofficial, useless 
words is the phrase "umm." People stuff in "umm" frequently, some more than others. 
This word means nothing, unless of course we're searching for someone who is maybe 
lacking confidence, is confused, or hasn't practiced much speaking. We all do it, you can 
hear me saying "umm" or "uhh" in the videos plenty of ...uh ... times. For most analysis, 
these words are useless. 

 
We would not want these words taking up space in our database or taking up valuable 
processing time. As such, we call these words "stop words" because they are useless, 
and we wish to do nothing with them. Another version of the term "stop words" can be 
more literal: Words we stop on. 

 
For example, you may wish to completely cease analysis if you detect words that are 
commonly used sarcastically and stop immediately. Sarcastic words, or phrases are 
going to vary by lexicon and corpus. For now, we'll be considering stop words as words 
that just contain no meaning, and we want to remove them. 
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You can do this easily, by storing a list of words that you consider to be stop words. 
NLTK starts you off with a bunch of words that they consider to be stop words, you can 
access it via the NLTK corpus with:  
 
from nltk.corpus import stopwords 

 
Here is the list:  
set(stopwords.words('english')) 
 
{'ourselves', 'hers', 'between', 'yourself', 'but', 'again', 'there', 'about', 'once', 'during', 
'out', 'very', 'having', 'with', 'they', 'own', 'an', 'be', 'some', 'for', 'do', 'its', 'yours', 'such', 
'into', 'of', 'most', 'itself', 'other', 'off', 'is', 's', 'am', 'or', 'who', 'as', 'fr  
>>> om', 'him', 'each', 'the', 'themselves', 'until', 'below', 'are', 'we', 'these', 'your', 'his', 
'through', 'don', 'nor', 'me', 'were', 'her', 'more', 'himself', 'this', 'down', 'should', 'our', 
'their', 'while', 'above', 'both', 'up', 'to', 'ours', 'had', 'she', 'all', 'no', 'when', 'at', 'any', 
'before', 'them', 'same', 'and', 'been', 'have', 'in', 'will', 'on', 'does', 'yourselves', 'then', 'that', 
'because', 'what', 'over', 'why', 'so', 'can', 'did', 'not', 'now', 'under', 'he', 'you', 'herself', 
'has', 'just', 'where', 'too', 'only', 'myself', 'which', 'those', 'i', 'after', 'few', 'whom', 't', 
'being', 'if', 'theirs', 'my', 'against', 'a', 'by', 'doing', 'it', 'how', 'further', 'was', 'here', 'than'} 
 

3. Lemmatizing with NLTK 
 

A very similar operation to stemming is called lemmatizing. The major difference 
between these is, as you saw earlier, stemming can often create non-existent words, 
whereas lemmas are actual words. 

 
So, your root stem, meaning the word you end up with, is not something you can just 
look up in a dictionary, but you can look up a lemma. 

 
Some times you will wind up with a very similar word, but sometimes, you will wind 
up with a completely different word. Let's see some examples.  
 

from nltk.stem import WordNetLemmatizer 

 

lemmatizer = WordNetLemmatizer() 

 

print(lemmatizer.lemmatize("cats")) 
print(lemmatizer.lemmatize("cacti"))  
print(lemmatizer.lemmatize("geese"))  
print(lemmatizer.lemmatize("rocks")) 
print(lemmatizer.lemmatize("python"))  
print(lemmatizer.lemmatize("better", pos="a")) 
print(lemmatizer.lemmatize("best", pos="a")) 
print(lemmatizer.lemmatize("run"))  
print(lemmatizer.lemmatize("run",'v')) 
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Here, we've got a bunch of examples of the lemma for the words that we use. The only 

major thing to note is that lemmatize takes a part of speech parameter, "pos." If not 

supplied, the default is "noun." This means that an attempt will be made to find the 

closest noun, which can create trouble for you. Keep this in mind if you use 

lemmatizing! 

 

 

4. Use of Sklearn 
 

Scikit-learn (formerly scikits.learn) is a free software machine learning library for 

the Python programming language. It features various classification , regression 

and clustering algorithms 

 

including support vector machines , random forests, gradient boosting, k-means and 

DBSCAN, and is designed to interoperate with the Python numerical and scientific 

libraries NumPy and SciPy. 

 

 

from sklearn.feature_extraction.text import CountVectorizer 

 

 

Convert a collection of text documents to a matrix of token counts.This implementation 

produces a sparse representation of the counts using scipy.sparse.csr_matrix.If you do 

not provide an a-priori dictionary and you do not use an analyzer that does some kind 

of feature selection then the number of features will be equal to the vocabulary size 

found by analyzing the data. 

 

from sklearn.metrics.pairwise import euclidean_distances 

 

Considering the rows of X (and Y=X) as vectors, compute the distance matrix 

between each pair of vectors. 

 

For efficiency reasons, the euclidean distance between a pair of row vector x and 

y is computed as: 

 

 

dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) 

 

This formulation has two advantages over other ways of computing distances. First, it 

is computationally efficient when dealing with sparse data. Second, if one argument 

varies but the other remains unchanged, then dot(x, x) and/or dot(y, y) can be pre-

computed. 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/SciPy
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However, this is not the most precise way of doing this computation, and the 

distance matrix returned by this function may not be exactly symmetric as required 

by, e.g., scipy.spatial.distance functions. 

 

5. Measuring the Cosine Similarity 
 

Cosine similarity is a measure of similarity between two non-zero vectors of an 

inner product space that measures the cosine of the angle between them. The 

cosine of 0° is 1, and it is less than 1 for any other angle in the interval [0,2π). It is 
thus a judgment of orientation and not magnitude: two vectors with the same 

orientation have a cosine similarity of 1, two vectors at 90° have a similarity of 0, 

and two vectors diametrically opposed have a similarity of -1, independent of their 

magnitude. Cosine similarity is particularly used in positive space, where the 

outcome is neatly bounded in [0,1]. The name derives from the term "direction 

cosine": in this case, note that unit vectors are maximally "similar" if they're parallel 

and maximally "dissimilar" if they're orthogonal (perpendicular). This is analogous 

to the cosine, which is unity (maximum value) when the segments subtend a zero 

angle and zero (uncorrelated) when the segments are perpendicular. 

 

Note that these bounds apply for any number of dimensions, and cosine similarity 

is most commonly used in high-dimensional positive spaces. For example, in 

information retrieval and text mining, each term is notionally assigned a different 

dimension and a document is 

characterised by a vector where the value of each dimension corresponds to the 

number of times that term appears in the document. Cosine similarity then gives a 

useful measure of how similar two documents are likely to be in terms of their 

subject matter. 

 

The technique is also used to measure cohesion within clusters in the field of 

Data Mining. 

 

Cosine distance is a term often used for the complement in positive space, that is: 

Dc(A,B)=1-Sc(A,B)where Dc is the cosine distance and Sc is the cosine similarity. It 

is important to note, however, that this is not a proper distance metric as it does not 

have the triangle inequality 

 property—or, more formally, the Schwarz inequality—and it violates the 

coincidence axiom; to repair the triangle inequality property while maintaining the 

same ordering, it is necessary to convert to angular distance (see below.)

https://en.wikipedia.org/wiki/Measure_of_similarity
https://en.wikipedia.org/wiki/Inner_product_space
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Text_mining
https://en.wikipedia.org/wiki/Distance_metric
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One of the reasons for the popularity of cosine similarity is that it is very efficient to 

evaluate, especially for sparse vectors, as only the non-zero dimensions need to be 

considered. 

 

The cosine of two non-zero vectors can be derived by using the Euclidean dot 

product formula: 

 

a.b=||a|| ||b|| cos(θ) 
 

Given two vectors of attributes, A and B, the cosine similarity, cos(θ), is 

represented using a dot product and magnitude as 

 

Similarity= cos(θ)=A.B/||A|| ||B||=sum(AiBi) from 1 to n/(sum(Ai) *sum(Bi)) 

from 1 to n 

 

where Ai and Bi are components of vector A and B respectivelyThe resulting 

similarity ranges from −1 meaning exactly opposite, to 1 meaning exactly the 

same, with 0 indicating orthogonality (decorrelation), and in-between values 

indicating intermediate similarity or dissimilarity. 

 

For text matching, the attribute vectors A and B are usually the term 

frequency vectors of the documents. The cosine similarity can be seen as a 

method of normalizing document length during comparison. 

 

Cosine Similarity for Vector Space Model 
 

The Dot Product 
 

Let’s begin with the definition of the dot product for two vectors:  

and , where  and  are the components of the vector (features 
of the document, or TF-IDF values for each word of the document in our 
example) and the  is the dimension of the vectors:  
 
 
 
 

 
As you can see, the definition of the dot product is a simple multiplication of each 

component from the both vectors added together. See an example of a dot 

product for two vectors with 2 dimensions each (2D): 
 
 
 
 
The first thing you probably noticed is that the result of a dot product between 
two vectors isn’t another vector but a single value, a scalar. 

https://en.wikipedia.org/wiki/Euclidean_vector#Dot_product
https://en.wikipedia.org/wiki/Euclidean_vector#Dot_product
https://en.wikipedia.org/wiki/Vector_(geometric)
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Magnitude_(mathematics)#Euclidean_vector_space
https://en.wikipedia.org/wiki/Euclidean_vector#Decomposition
https://en.wikipedia.org/wiki/Tf-idf
https://en.wikipedia.org/wiki/Tf-idf
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This is all very simple and easy to understand, but what is a dot product ? What is 
the intuitive idea behind it ? What does it mean to have a dot product of zero ? To 
understand it, we need to understand what is the geometric definition of the dot 
product:  
 
 
 
 
 
 
 
 
 
 
Rearranging the equation to understand it better using the commutative 
property, we have:  
 
 
 

 

 

So, what is the term  ? This term is the projection of the vector  into 

the vector  as shown on the image below: 
Now, what happens when the vector  is orthogonal (with an angle of 90 degrees) to 

the vector  like on the image below ?  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Two orthogonal vectors (with 90 degrees angle). 

There will be no adjacent side on the triangle, it will be equivalent to zero, the 

 

term  will be zero and the resulting multiplication with the magnitude of 

the vector  will also be zero. Now you know that, when the dot product between 

two different vectors is zero, they are orthogonal to each other (they have an angle 

of 90 degrees), this is a very neat way to check the orthogonality of different 

vectors. It is also important to note that we are using 2D examples, but the most 

amazing fact about it is that we can also calculate angles and similarity between 

vectors in higher dimensional spaces, and that is why math let us see far than the 
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obvious even when we can’t visualize or imagine what is the angle between two 

vectors with twelve dimensions for instance. 

And that is it, this is the cosine similarity formula. Cosine Similarity will 
generate a metric that says how related are two documents by looking at the 
angle instead of magnitude, like in the examples below:  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
The Cosine Similarity values for different documents, 1 (same direction), 0 (90 
deg.), -1 (opposite directions).  
Note that even if we had a vector pointing to a point far from another vector, they 
still could have an small angle and that is the central point on the use of Cosine 
Similarity, the measurement tends to ignore the higher term count on documents. 
Suppose we have a document with the word “sky” appearing 200 times and another 
document with the word “sky” appearing 50, the Euclidean distance between them 
will be higher but the angle will still be small because they are pointing to the same 
direction, which is what matters when we are comparing documents. 
 
 
Now that we have a Vector Space Model of documents (like on the image 
below) modeled as vectors (with TF-IDF counts) and also have a formula to 
calculate the similarity between different documents in this space, let’s see 
now how we do it in practice using scikit-learn (sklearn). 
 
 

http://scikit-learn.org/
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Vector Space  
Model 
 
 
Practice Using Scikit-learn (sklearn) 
 
* In this tutorial I’m using the Python 2.7.5 and Scikit-learn 0.14.1. 

 

The first thing we need to do is to define our set of example documents:  
 
 

1. documents = (   
2. "The sky is blue",  
3. "The sun is bright",  
4. "The sun in the sky is bright",  
5. "We can see the shining sun, the bright sun"   
6. ) 

 
 
And then we instantiate the Sklearn TF-IDF Vectorizer and transform our 
documents into the TF-IDF matrix:  
 
 

1. from sklearn.feature_extraction.text import TfidfVectorizer   
2. tfidf_vectorizer = TfidfVectorizer()  
3. tfidf_matrix = tfidf_vectorizer.fit_transform(documents)  
4. print tfidf_matrix.shape   
5. (4, 11) 
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Now we have the TF-IDF matrix (tfidf_matrix) for each document (the number of 
rows of the matrix) with 11 tf-idf terms (the number of columns from the matrix), 
we can calculate the Cosine Similarity between the first document (“The sky is 
blue”) with each of the other documents of the set:  
 
 

1. from sklearn.metrics.pairwise import cosine_similarity 
 

2. cosine_similarity(tfidf_matrix[0:1], tfidf_matrix)   
3. array([[ 1. , 0.36651513, 0.52305744, 0.13448867]]) 

 
 

 
The tfidf_matrix[0:1] is the Scipy operation to get the first row of the sparse matrix 
and the resulting array is the Cosine Similarity between the first document with all 
documents in the set. Note that the first value of the array is 1.0 because it is the 
Cosine Similarity between the first document with itself. Also note that due to the 
presence of similar words on the third document (“The sun in the sky is bright”), it 
achieved a better score. 

 

If you want, you can also solve the Cosine Similarity for the angle between vectors:  
 
 
 
 
 
 
We only need to isolate the angle ( ) and move the  to the right hand of the 
equation:  
 
 
 
 
 
 
The  is the same as the inverse of the cosine ( ). 
 
 
 
Lets for instance, check the angle between the first and third documents:  
 
 
 

1. import math   
2. # This was already calculated on the previous step, so we just use the value  
3. cos_sim = 0.52305744  
4. angle_in_radians = math.acos(cos_sim)  
5. print math.degrees(angle_in_radians)   
6. 58.462437107432784 
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Euclidean Distance 

Euclidean distance is the most common use of 
distance. In most cases when people said about 
distance, they will refer to Euclidean distance. 
Euclidean distance is also known as simply 
distance. When data is dense or continuous, this 
is the best proximity measure. 

The Euclidean distance between two points is 
the length of the path connecting them.The Pythagorean theorem gives this distance 
between two points. 

The Euclidean distance between points p and q is the length of the line 

segment connecting them (pq). 

In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points 
in Euclidean n-space, then the distance (d) from p to q, or from q to p is given by 
the Pythagorean formula: 

 

 

 

http://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Line_segment
https://en.wikipedia.org/wiki/Line_segment
https://en.wikipedia.org/wiki/Cartesian_coordinates
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Pythagorean_theorem
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DIFFERENCE BETWEEN COSINE SIMILARITY AND EUCLIDEAN DISTANCE 
SIMILARITY 
 
 
EUCLIDEAN DISTANCE SIMILARITY 
 
 
Euclidean Similarity calculates the distance between two users and then it tries to find 
out the similarity. This makes sense if you think of users as points when there are many 
dimensions (as many dimensions as the items), whose coordinates are preference 
values. This similarity metric calculates the Euclidean Distance (d) between two such 
user points. If you look at User 1, the distance is calculated as 0, because for this 
particular user the distance is 0. Similarity will be calculated using the formula, 1/1+d, 
where d is the distance. 
 
 
COSINE SIMILARITY 
 

Cosine similarity metric finds the normalized dot product of the two attributes. By 
determining the cosine similarity, we would effectively try to find the cosine of the 
angle between the two objects. The cosine of 0° is 1, and it is less than 1 for any other 
angle. 

It is thus a judgement of orientation and not magnitude: two vectors with the same 
orientation have a cosine similarity of 1, two vectors at 90° have a similarity of 0, and 
two vectors diametrically opposed have a similarity of -1, independent of their 
magnitude. 

Cosine similarity is particularly used in positive space, where the outcome is neatly 
bounded in [0,1]. One of the reasons for the popularity of cosine similarity is that it is 
very efficient to evaluate, especially for sparse vectors. 
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Ranking of Answers by the use of Text Classification 
with NLTK 
 

This psection demonstrates how to obtain an n by n matrix of pairwise semantic/cosine 
similarity among n text documents. Finding cosine similarity is a basic technique in text 
mining. The purpose of doing this is to operationalize “common ground” between 
actors in online political discussion (for more see Liang, 2014, p. 160). 
The tools are Python libraries scikit-learn (version 0.18.1; Pedregosa et al., 2011) and nltk 
(version 3.2.2.; Bird, Klein, & Loper, 2009). Perone’s (2011a; 2011b; 2013) three-piece web 
tutorial is extremely helpful in explaining the concepts and mathematical logics. 
However, some of these contents have not kept up with scikit-learn’s recent update and 
text preprocessing was not included. This post addresses these issues. 
If you are familiar with cosine similarity and more interested in the Python part, feel 
free to skip and scroll down to Section III. 
I. What’s going on here? 
The cosine similarity is the cosine of the angle between two vectors. Figure 1 shows 
three 3-dimensional vectors and the angles between each pair. In text analysis, each 
vector can represent a document. The greater the value of θ, the less the value of cos θ, 
thus the less the similarity between two documents. 
 
 
Figure 1. Three 3-dimensional 
vectors and the angles between 
each pair. Blue vector: (1, 2, 3); 
Green vector: (2, 2, 1); Orange 
vector: (2, 1, 2). 

In math equation: 
 
where cosine is the dot/scalar product of two 
vectors divided by the product of their 

Euclidean norms. 
II. How to quantify texts in order to do the math? 
a. Raw texts are preprocessed with the most common words and punctuation removed, 
tokenization, and stemming (or lemmatization). 
 
b. A dictionary of unique terms found in the whole corpus is created. Texts are 
quantified first by calculating the term frequency (tf) for each document. The numbers 
are used to create a vector for each document where each component in the vector 
stands for the term frequency in that document. Let n be the number of documents and 
m be the number of unique terms. Then we have an n by m tf matrix. 
 
c. The core of the rest is to obtain a “term frequency-inverse document frequency” (tf-
idf) matrix. Inverse document frequency is an adjustment to term frequency. This 
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adjustment deals with the problem that generally speaking certain terms do occur more 
than others. Thus, tf-idf scales up the importance of rarer terms and scales down the 
importance of more frequent terms relative to the whole corpus. 
The idea of the weighting effect of tf-idf is better expressed in the two equations below 
(the formula for idf is the default one used by scikit-learn (Pedregosa et al., 2011): the 1 
added to the denominator prevents division by 0, the 1 added to the nominator makes 
sure the value of the ratio is greater than or equal to 1, the third 1 added makes sure that 
idf is greater than 0, i.e., for an extremely common term t for which n = df(d,t), its idf is 
at least not 0 so that its tf still matters; Note that in Perone (2011b) there is only one 1 
added to the denominator, which results in negative values after taking the logarithm 
for some cases. Negative value is difficult to interpret): 

 
where n is the total number of documents and df(d, t) is the number of documents in 
which term t appears. In Equation 2, as df(d, t) gets smaller, idf(t) gets larger. In 
Equation 1, tf is a local parameter for individual documents, whereas idf is a global 
parameter taking the whole corpus into account. 
Therefore, even the tf for one term is very high for document d1, if it appears 
frequently in other documents (with a smaller idf), its importance of “defining” d1 is 
scaled down. On the other hand, if a term has high tf in d1 and does not appear in 
other documents (with a greater idf), it becomes an important feature that 
distinguishes d1 from other documents. 
 
d. The calculated tf-idf is normalized by the Euclidean norm so that each row vector has 
a length of 1. The normalized tf-idf matrix should be in the shape of n by m. A cosine 
similarity matrix (n by n) can be obtained by multiplying the if-idf matrix by its  
transpose (m by n). 

http://scikit-learn.org/stable/modules/feature_extraction.html#the-bag-of-words-representation
https://sites.temple.edu/tudsc/files/2017/03/tfidf-equations.png
https://sites.temple.edu/tudsc/files/2017/03/tfidf-equations.png
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Implementation of Problem 
A simple real-world data for the implementation is obtained from the movie review 
corpus provided by nltk (Pang & Lee, 2004). The first two reviews from the positive set 
and the negative set are selected. Then the first sentence of these for reviews are 
selected. We can first define 4 documents in Python as:  

1 

2 

3 

4 

5 

 d1 = "plot: two teen couples go to a church party, drink and then drive." 

 d2 = "films adapted from comic books have had plenty of success , whether they're about 

superheroes ( batman , superman , spawn ) , or geared toward kids ( casper ) or the arthouse 

crowd ( ghost world ) , but there's never really been a comic book like from hell before . " 

 d3 = "every now and then a movie comes along from a suspect studio , with every indication 

that it will be a stinker , and to everybody's surprise ( perhaps even the studio ) the film 

becomes a critical darling . " 

 d4 = "damn that y2k bug . " 

 documents = [d1, d2, d3, d4] 

 

a. Preprocessing with nltk 

The default functions of CountVectorizer and TfidfVectorizer in scikit-learn detect word 
boundary and remove punctuations automatically. However, if we want to do 
stemming or lemmatization, we need to customize certain parameters in 
CountVectorizer and TfidfVectorizer. Doing this overrides the default tokenization 
setting, which means that we have to customize tokenization, punctuation removal, 
and turning terms to lower case altogether. 
Normalize by stemming: 

1 

2 

3 

4 

5 

6 

7 

8 

 import nltk, string, numpy 
 nltk.download('punkt') # first-time use only 
 stemmer = nltk.stem.porter.PorterStemmer() 
 def StemTokens(tokens): 
     return [stemmer.stem(token) for token in tokens] 
 remove_punct_dict = dict((ord(punct), None) for punct in string.punctuation) 
 def StemNormalize(text): 
     return StemTokens(nltk.word_tokenize(text.lower().translate(remove_punct_dict))) 
 

Normalize by lemmatization: 

1 

2 

3 

4 

5 

6 

7 

 nltk.download('wordnet') # first-time use only 
 lemmer = nltk.stem.WordNetLemmatizer() 
 def LemTokens(tokens): 
     return [lemmer.lemmatize(token) for token in tokens] 
 remove_punct_dict = dict((ord(punct), None) for punct in string.punctuation) 
 def LemNormalize(text): 
     return LemTokens(nltk.word_tokenize(text.lower().translate(remove_punct_dict))) 
 

If we want more meaningful terms in their dictionary forms, lemmatization is preferred. 

 



24 

 

b. Turn text into vectors of term frequency: 

1 

2 

3 

 from sklearn.feature_extraction.text import CountVectorizer 
 LemVectorizer = CountVectorizer(tokenizer=LemNormalize, stop_words='english') 
 LemVectorizer.fit_transform(documents) 
 

Normalized (after lemmatization) text in the four documents are tokenized and each 
term is indexed: 

print LemVectorizer.vocabulary_ 

Out: 

{u'spawn': 29, u'crowd': 11, u'casper': 5, u'church': 6, u'hell': 20, 

 u'comic': 8, u'superheroes': 33, u'superman': 34, u'plot': 27, u'movie': 24, 

 u'book': 3, u'suspect': 36, u'film': 17, u'party': 25, u'darling': 13, u'really': 28,  

 u'teen': 37, u'everybodys': 16, u'damn': 12, u'batman': 2, u'couple': 9, u'drink': 14, 

 u'like': 23, u'geared': 18, u'studio': 31, u'plenty': 26, u'surprise': 35, u'world': 39, 

 u'come': 7, u'bug': 4, u'kid': 22, u'ghost': 19, u'arthouse': 1, u'y2k': 40, 

 u'stinker': 30, u'success': 32, u'drive': 15, u'theyre': 38, u'indication': 21, 

 u'critical': 10, u'adapted': 0} 

And we have the tf matrix: 

tf_matrix = LemVectorizer.transform(documents).toarray() 
print tf_matrix 
Out: 

[[0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 

  1 0 0 0] 

 [1 1 1 2 0 1 0 0 2 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 

  0 1 1 0] 

 [0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 2 0 0 0 1 1 

  0 0 0 0] 

 [0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  0 0 0 1]] 

This should be a 4 (# of documents) by 41 (# of terms in the corpus). Check its shape: 

tf_matrix.shape 
Out: 

(4, 41) 
c. Calculate idf and turn tf matrix to tf-idf matrix: 

Get idf: 

1 
2 
3 
4 

 from sklearn.feature_extraction.text import TfidfTransformer 
 tfidfTran = TfidfTransformer(norm="l2") 
 tfidfTran.fit(tf_matrix) 
 print tfidfTran.idf_ 
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Out: 

1 
2 
3 
4 
5 
6 
7 

[ 1.91629073  1.91629073  1.91629073  1.91629073  1.91629073  1.91629073 
  1.91629073  1.91629073  1.91629073  1.91629073  1.91629073  1.91629073 
  1.91629073  1.91629073  1.91629073  1.91629073  1.91629073  1.51082562 
  1.91629073  1.91629073  1.91629073  1.91629073  1.91629073  1.91629073 
  1.91629073  1.91629073  1.91629073  1.91629073  1.91629073  1.91629073 
  1.91629073  1.91629073  1.91629073  1.91629073  1.91629073  1.91629073 
  1.91629073  1.91629073  1.91629073  1.91629073  1.91629073] 
 

Now we have a vector where each component is the idf for each term. In this case, the 
values are almost the same because other than one term, each term only appears in 1 
document. The exception is the 18th term that appears in 2 document.  

d. Get the tf-idf matrix (4 by 41): 

tfidf_matrix = tfidfTran.transform(tf_matrix) 
print tfidf_matrix.toarray() 
Here what the transform method does is multiplying the tf matrix (4 by 41) by the 
diagonal idf matrix (41 by 41 with idf for each term on the main diagonal), and dividing 
the tf-idf by the Euclidean norm. This output takes too much space and you can check it 
by yourself. 

e. Get the pairwise similarity matrix (n by n): 

cos_similarity_matrix = (tfidf_matrix * tfidf_matrix.T).toarray() 
print cos_similarity_matrix 
Out: 

array([[ 1.        ,  0.        ,  0.        ,  0.        ], 
       [ 0.        ,  1.        ,  0.03264186,  0.        ], 
       [ 0.        ,  0.03264186,  1.        ,  0.        ], 
       [ 0.        ,  0.        ,  0.        ,  1.        ]]) 
The matrix obtained in the last step is multiplied by its transpose. The result is the 
similarity matrix, which indicates that d2 and d3 are more similar to each other than any 
other pair. 
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Sample Output 
Sample 1: 
 
Step 1: This is user interface generated after running the code: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2: After clicking the Insert button 
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Step 3: Now, to measure cosine similarity between the question and the answers we 
have to click the “Cosine Similarity Measure” button to get the desired output 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Step 4: To measure the Euclidean similarity between the question and the answers 
we  have to click “Euclidean Similarity Measure” button to get the desired output 
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Sample 2: 
 
Step 1: This is user interface generated after running the code: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2: After clicking the Insert button 
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Step 3: Now, to measure cosine similarity between the question and the answers we 
have to click the “Cosine Similarity Measure” button to get the desired output 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Step 4: To measure the Euclidean similarity between the question and the answers 
we  have to click “Euclidean Similarity Measure” button to get the desired output 
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Conclusion 

 

This document presented a method for measuring the similarity between sentences 

or very short texts, based on semantic and word order information. Firstly, semantic 

similarity is derived from a lexical knowledge base and a corpus. The lexical 

knowledge base models common human knowledge about words in a natural 

language, this knowledge is usually stable across a wide range of language 

application areas. A corpus reflects the actual usage of language and words. Thus 

our semantic similarity not only captures common human knowledge, but it is also 

able to adapt to an application area using a corpus specific to that application. 

Secondly, the proposed method considers the impact of word order on sentence 

meaning. The derived word order similarity measures the number of different 

words as well as the number of word pairs in a different order. The overall sentence 

similarity is then defined as a combination of semantic similarity and word order 

similarity. Considering the view that word order plays a subordinate role for 

interpreting sentence meaning, we weight word order similarity less in defining the 

overall sentence similarity. To evaluate our similarity algorithm, we collected a set of 

32 sentence pairs from a variety of articles and books in computational linguistics. 

An initial experiment on this data illustrates that the proposed method provides 

similarity measures that are fairly consistent with human knowledge. Next we 

constructed a data set of 30 sentence pairs using a dictionary definition for each of 

the Rubenstein and Goodenough word pairs. The sentences were rated by human 

participants as a benchmark for comparison with our method which performed well 

on this data set. Further work will include the construction of a more varied sentence 

pair dataset with human ratings and an improvement to the algorithm to 

disambiguate word sense using the surrounding words to give a little contextual 

information. Currently comparison with some of the other algorithms discussed is 

very difficult due to a lack of any other published results on sentence similarities (a 

benchmark data set) and a variety of problems in re-implementing these algorithms 

for this domain. These include the substantial amount of parameters which must be 

manually set and the definition of features. 



31 

 

References 

 
[I]   J. Allen, Natural Language Understanding. Benjamin Cummings, Redwood City, 

      CA, 1995. 

[II]   https://sites.temple.edu/tudsc/2017/03/30/measuring-similarity-between-       

texts-in-python/ 

[III]   http://scikit-learn.org/stable/modules/feature_extraction.html#the-bag-of- 

words-representation 

[IV]   A. Budanitsky and G. Hirst, “Semantic distance in WordNet: An experimental, 

application-oriented evaluation of five measures,” Workshop WordNet and Other 

Lexical Resources, Second Meeting of the North American Chapter of the 

Association for Computational Linguistics, Pittsburgh, 2001. 

[IV]   C. Burgess, K. Livesay, and K. Lund, “Explorations in context space: Words, 

sentences, discourse,” Discourse Processes, vol. 25, no. 2-3, pp. 211-257, 1998. 

[V]   W.G. Charles, “Contextual correlates of meaning,” Applied Psycholinguistics, 

vol. 21, no. 4, pp. 505-524, 2000. 

[VI]   J. H. Chiang and H.C. Yu, “Literature extraction of protein functions using 

sentence pattern mining,” IEEE Transactions on Knowledge and Data 

Engineering, vol. 17, no. 8, pp. 1088-1098, 2005. 

[VII]   T.A.S. Coelho, P.P. Calado, L.V. Souza, B. Ribeiro-Neto, and R. Muntz, “Image 

retrieval using multiple evidence ranking,” IEEE Transactions on Knowledge and 

Data Engineering, vol. 16, no. 4, pp. 408-417, 2004. 

[IX]   G. Erkan and D.R. Radev, “LexRank: Graph-based lexical centrality as salience 

in text summarization,” Journal of Artificial Intelligence Research, vol. 22, pp. 457- 

[X]   P.W. Foltz, W. Kintsch, and T.K. Landauer, “The measurement of textual 

coherence with latent semantic analysis,” Discourse Processes, vol. 25, no. 2-3, 

pp. 285-307, 1998. 

[XI]   P. Wiemer-Hastings, “Adding syntactic information to LSA,” Proceedings of 

the Twenty-second Annual Conference of the Cognitive Science Society, Lawrence 

Erlbaum Associates, Mahwah, NJ, pp. 989-993, 2000. 

[XII]   V. Hatzivassiloglou, J. Klavans, and E. Eskin, “Detecting text similarity over 

short passages: Exploring linguistic feature combinations via machine learning,” 

Joint SIGDAT Conference on Empirical Methods in NLP and Very Large 

Corpora, University of Maryland, College Park, MD, USA, 1999. 

[XIII]   M.A. Rodriguez and M.J. Egenhofer, “Determining semantic similarity 

among entity classes from different ontologies,” IEEE Transactions on Knowledge 

and Data Engineering, vol. 15, no. 2, pp. 442-456, 2003. 

[XIV]   H. Rubenstein and J.B. Goodenough, “Contextual Correlates of Synonymy,” 

Comm. ACM, vol.8, No. 10, pp627-633, 1965. 

[XV]   G. Salton, Automatic Text Processing: the Transformation, Analysis, and 

Retrieval of Information by Computer. Addison-Wesley, Mass.Wokingham, 1989. 

https://sites.temple.edu/tudsc/2017/03/30/measuring-similarity-between-
http://scikit-learn.org/stable/modules/feature_extraction.html#the-bag-of-


32 

 

 

APPENDIX 
The code snippet for measuring the similarity between question and answers are 
given here: 
 
Cosine Similarity Measure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Euclidean Similarity Measure 
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Code for user interface: 
 


