

OPTIMIZATION OF SOFTWARE TESTING

USING HEURISTIC TECHNIQUE

Report submitted for the partial fulfilment of the requirements for the degree of Bachelor of

Technology in Information Technology

Submitted by

TITAS SAHA

University Roll No.: 11700215102

MOHIT JAIN

University Roll No.: 11700214042

SOUMALLYA GHOSH

University Roll No.:11700215099

Under the Guidance of

DR. DIPANKAR MAJUMDAR

Associate Professor, Department of Information Technology

RCC Institute of Information Technology, Kolkata

RCC Institute of Information Technology

Canal South Road, Beliaghata, Kolkata – 7OOO15

[Affiliated to West Bengal University of Technology]

Department of Information Technology

RCC Institute of Information Technology, Kolkata

Canal South Road, Beliaghata, Kolkata – 7OOO15

Approval

This is to certify that the project report entitled “Graph Based Simulation & Optimization of

Software Testing” prepared under my supervision by (Titas Saha, Roll Number:

11700215102 and Mohit Jain, Roll Number: 11700214042 and Soumallya Ghosh, Roll

Number: 11700215099), be accepted in partial fulfilment for the degree of Bachelor of

Technology in Information Technology.

It is to be understood that by this approval, the undersigned does not necessarily endorse or

approve any statement made, opinion expressed or conclusion drawn thereof, but approves

the report only for the purpose for which it has been submitted.

... ..
 Dr.Abhijit Das, HOD (I.T Dept) Dr.Dipankar Majumdar ,Mentor

 And professor (I.T Dept)

Acknowledgment

We would like to express our sincere gratitude to Mr. Dipankar Majumdar of the department

of Information Technology, whose role as project guide was invaluable for the project. We

are extremely thankful for the keen interest he / she took in advising us, for the books and

reference materials provided for the moral support extended to us.

Last but not the least we convey our gratitude to all the teachers for providing us the

technical skill that will always remain as our asset and to all non-teaching staff for the

gracious hospitality they offered us.

Place:

Date:

..

 ...

...

Index

Contents

1. Introduction

2. Problem Definition

3. Literature Survey

4. SRS (Software Requirement

Specification)

5. Planning

6. Design

7. Implementation and Flow chart

8. Future scope

9. References / Bibliography

10. Conclusion

Page Numbers

05

06

07

08

09-10

10-24

25 -27

28

29

30

1. Introduction

 Software Engineering is extremely relevant for the important stage of

systems development. Since its conception in the 1970s, important advances in

software quality were achieved due to research models, standards and methodologies

to support systems development. The application of such methods takes place in

several aspects related to the development process, such as Project Planning,

Requirements Analysis and Software Testing.
Unfortunately, in some cases, the conventional methods developed by the specialized

scientific community are not able to solve certain problems that arise during the

process of software development. These problems occur in inherently complex

problems, such as those involving the selection of a solution in a prohibitively large set

of possibilities. Problems of such kind require automated resolution methods, so the

problem can be solved efficiently.
In the Software Testing phase, we find some problems that can be modelled using

automated methods. For example, consider the activity of test cases prioritization.

This activity consists in determining the best execution order for the test cases of a

system. The quality of an order is defined by means of a coverage metric calculated

mathematically that determined how soon a test set covers the entire system,

rendering the rest of the tests unnecessary. Although this metric can be described

using text, the resolution of the problem itself is too costly given the number of

possible permutations among the test cases. Hence, the solution to the problem of test

cases prioritization cannot be easily described by rules written in textual documents or

steps and standards. Nevertheless, the mathematical modelling of the problem as an

optimization problem is desirable given the existence of mathematical characteristics

in the problem.

2. Problem Definition

 Software Testing is the phenomenon of finding errors after executing the pro-

grams. Software testing can be defined by many processes designed sequentially and

does not do anything unintended. The objective of software testing is to finalize the

application software against the user requirements. It must have good test coverage to

test the application software and perform as per the specifications. For generating list

of coverage’s, the test cases should be designed with maximum possibilities of finding

various errors or bugs. The test cases should be very effective and is measured

through the number of defects or errors reported. Generation of test cases or test data

is a method to identify the data set which satisfies the criteria.

Optimization intends to maximize or minimize a mathematical function defined by

coefficients and variables. The variables that define the function may be restricted,

i.e., the variables must satisfy a set of equations defined according to each problem

instance. Heuristics are a subset of the techniques that can be used to solve

optimization problems.

The term heuristics was introduced by Glover and represents a class of generic

search algorithms. Thus, heuristics are generic kind of heuristic, i.e., that can be used

in different kinds of problems. These methods use ideas from different areas as an

inspiration to make the process of finding the solution to optimization problems. As

examples of a heuristic we can underscore Simulated Annealing which is based on a

physical process in metallurgy. Other examples are Genetic Algorithms, which are

based on concepts of evolution population.

The overall execution process of a heuristic is the search for a subset of solutions in

the solution space guided by fitness functions. The fitness function is a mathematical

function that assigns a value to each solution in the search space. As a comparison,

consider a exhaustive search: to determine the best solution to a problem, all existing

solutions are visited and in the end the best is returned. Another type of technique

that can be used to solve optimization problems are the exact methods. In this

approach the search is done from decisions based on mathematical theorems. The

operation of heuristics works in a way that to determine the final solution, only some

existing solutions are actually visited. The search is conducted under a process that is

specific to each heuristic, but it is a way that attempts to intelligently find good

solutions. However, there is no guarantee the solution returned by a heuristic is the

best.

Our problem definition requires us to create a Control Flow Graph and apply Genetic

Algorithm

3. LITERATURE SURVEY

For the given project requires Heuristic technique. For this reason we have studied Praveen

Ranjan Srivastava’s article on Automated “Software testing using meta-heuristic technique”

which is based on optimization in software testing efficiency. We have studied this article

for referencing GA(Genetic Algorithm), A GA starts with guesses and attempts to improve

the guesses by evolution. A GA will typically have five parts: a representation of a guess

called a chromosome, an initial pool of chromosomes, a fitness function, a selection

function and a crossover operator and a mutation operator. A chromosome can be a binary

string or a more elaborate data structure. The initial pool of chromosomes can be randomly

produced or manually created. Genetic algorithms are often used for optimization problems

in which the evolution of a population is a search for a satisfactory solution given a set of

constraints. In this paper we have learnt how possible to apply Genetic Algorithm

techniques and fitness function for finding the minimum shortest paths for improving

software testing efficiency. The Genetic Algorithms also outperforms the exhaustive search

and local search techniques.

 Also we have studied Rudolf Ferenc’s article on “Optimization of software test by the

application of Heuristic Technique” and it is based on how implement heuristic technique

and what is heuristic technique. We have studied this article for referencing Heuristic

Optimization, within which we have studied different types of Heuristic technique which are

Hill Climbing, Simulated Annealing and Genetic Algorithm. Besides we have studied

Wenfei Fan’s article on ‘Distributed Graph Simulation’ and it is based on undamental

problems for distributed graph simulation. We have learnt how to simulate a graph

model.We have also reffered to an article named “optimization in software testing

Using Metaheuristics ” by Fabrício Gomes de Freitas1 , Camila Loiola Brito Maia2 ,

Gustavo Augusto Lima de Campos3 . Jerffeson Teixeira de Souza for study of different

techniques and approaches that can be applied in our project that is Optimization in

software testing Using Heuristic Approach.

4. SRS (SOFTWARE REQUIREMENT SPECIFICATION)

1.) Functional requirements:-

 a.) There must be a user to

1.) Give input for threshold for matrix in truncation

2.) To give choice weather the output of Floyd Warshall output is upto the mark or not.

2.) Software requirements

 a.) Operating System

 To run any programme in the system OS must be present .The OS used in our project is

 UBUNTU 16.04 LTS which is for 64bit processer.

 b.) Editor or IDE

 To write the programme we require a IDE or a editor. We have used Gedit editer,

 Gedit is the official text editor of the GNOME desktop environment. While aiming

 at simplicity and ease of use, Gedit is a powerful general purpose text editor.

3.) Hardware requirements

 a.) A desktop or PC/laptop.

 A desktop or Pc is required for working on the programme i.e. writing and editing

 of code. Here we have used laptop which DELL inspirion 3453 i5 7th generation

 b.) A pen drive or a CD

 A pen drive or a CD is required for transferring of data, which may be

 articles, software or any other data required for project

4.) Non Functional requirement

 The programme must be able to generate or simulate a Cfg (control Flow Graph) without

any error and traversal of the cfg using various random value must be smooth.and there

must be application of Genetic algorithm

5. Planning

The project simulates white box testing .genereating a model control flow graph we are

required to apply genetic algorithm to make it optimized .the CFG(control Flow Graph) is

generated using a randomly generated number array.the array is truncated by a random

value given by the user .After that it is put into floyd Warshall such that we have a precursor

to control flow graph . The precursor model is then used to create a dedicated node and a

end node such that the graph looks like the true form of CFG.After a CFG is created we are

initialising a population before applying GA(genetic Algorithm) ,For this we have used

random number as seeds and from that seeds tracked down paths traversed in CFG the two

seeds which covered longest path is taken as parents which are then stored as binary strings

.From these two parents children are generated using crossover function which is nothing

but making new binary strings by reshuffling and exchanging parent Binary strings

.The newly generated childrens strings are passed into mutation function where there binary

strings are mutated or changed at certain bit position.Now when the population is created

genetic algorithm is applied which is based on Darwin’s theory of survival of fittest ,for

that purpose a fitness function is then taken which selects the parents for next generation

,this step is followed by crossover, mutation and again fitness function the cycle continues

until the desired result is achived.

6.Design

1.Control Flow Graph :-

An example of Control Flow Graph

A control flow graph (CFG) in computer science is a representation, us-

ing graph notation, of all paths that might be traversed through a program during

its execution

In a control flow graph each node in the graph represents a basic block, i.e. a straight-

line piece of code without any jumps or jump targets; jump targets start a block, and

jumps end a block. Directed edges are used to represent jumps in the control flow.

There are, in most presentations, two specially designated blocks: the entry block,

through which control enters into the flow graph, and the exit block, through which all

control flow leaves

a.)algorithm for Genteration of matrix:

generate()

{

 int i,j,n;

 srand(Null); //initializes the starting value (seed)for generation of random

for(i=0:dimrow-1) number

 for(j=0:dimcol-1)

 {

 n=rand()%100;

 m[i][j]=n;

 if(i==j)

 {

 m[i][j]=0; //initializes the diagonal elements=0

 }

 }

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Depiction
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Basic_block
https://en.wikipedia.org/wiki/Jump_target_(computing)
https://en.wikipedia.org/wiki/Edge_(graph_theory)
https://en.wikipedia.org/wiki/Control_flow

}

b.)algorithm for truncation and normalization of matrix

truncate()

{

float thresh;

int i,j;

scanf(thresh); //taken user input for truncating the matrix

for(i=0:dimrow-1)

 for(j=0:dimcol-1)

 {

 if(m[i][j]<=thresh)

 {

 am[i][j]=0; // every value less than threshold or equal to it is re-initialized

 // as 0

 }

 else

 {

 am[i][j]=m[i][j]; //greater than threshold are left in the adjacency matrix

 }

 }

print(am);

 normalize();

 print(am);

}

normalize()

{

 int i,j,k,sum;

for(i=0:dimrow-1)

{

 sum=0;

 for(k=0:dimcol-1)

 {

 sum=sum+am[i][k]; // sums up each element in the row for division

 }

 for(j=0:dimcol-1)

 {

 am[i][j]=am[i][j]/sum; //each element in matrix becomes a fractional value

 }

}

 for(i=0:dimrow-1)

 {

 for(j=0:dimcol-1)

 {

 if((i!=j)&&(am[i][j]=0)) //since the diagonal elements are already 0

 { //so excluding them those elements which are

 //truncated

 am[i][j]=999.99 //and normalized are reiniialized as 999.99 which is

 //a

 } //representation of infinity

 }

 }

}

c.)after truncation of matrix has been done application of it in floyd warshall

algorithm is done on matrix am[][]

int floyd()

{

 int i,j,k,n;

 for(k=0:dimrow-1)

 {

 for(i=0:dimrow-1)

 {

 for(j=0:dimcol-1)

 {

 if(am[i][k]+am[k][j]<am[i][j])

 {

 am[i][j]=am[i][k]+am[k][j];

 }

 }

 }

 }

 print(am);

 printf("would you like to truncate again if result of floyd warshall is not uptomark if yes

give 1 or else give 0 ");

 scanf("%d",&n); //asks for user choice

 return(n);

}

d.) Algorithm for creating a dedicated node(ghost node or a node from where we

can go to anywhere in the matrix) and end node .

i.)

void create_dedicated_node()

{

 int i,j,k; //basicly the previous matrix n x n is being

copied into a

 float sum; // a 2d matrix of (n+1) x (n+1) named m2

 m2[0][0]=0; //the variable sum is used for summing up the

colum of

 for(i=1;i<=dimrow;i++)

 {

 sum=sumcol(i); //sumcol() is nothing but a function which is

required for

 print(i,sum); //summing up of column

 m2[0][i]=(sum/(dimcol+1));

 }

 For i=1 to dimrow

 {

 For j=0 to dimcol

 {

 if(j==0)

 {

 m2[i][j]==0; // since we can go to each and every node

from

 } // ghost node or dedicated node but

reverse process is

 if((j!=0)) //not true

 {

 m2[i][j]=am[i-1][j-1];

 }

 }

 }

ii.)

void creatend()

{

inti,j;

float sum; //the sum variable is used for summing up the values in the particular

//row

For i=0 to dimrow

{

 sum=sumrow(i); //sumrow() returns sum of particular row

 print(,i,sum);

 For j=0 to dimcol

 {

 m3[i][j]=m2[i][j]; // the m2 matrix which was created during creation

of

 } //dedicated node

 m3[i][dimrow+1]=((sum)/(dimrow+2));

 }

 For j=0 to dimcol

 {

 m3[dimrow+1][j]=0.0; //the last row of matrix is filled with zeros

because

 } // so as to create a exit condition for

control flow graph

}

3.)Creation of Population for Genetic Algorithm:-

a.)Algorithm for creation of seed:-

 void seed()

{

 int i;

 srand(rand()) //seeding of random number genretor

 for i=0 to 6

 {

 a[i]=random number between 0 to 100;

 print(a[i]);

 }

 }

b.) Algorithm for creation of paths and there distance travelled :-

void using_seeds()

{

 int k;

 float distance;

 int nxtnode;

 int r;

for k=0 to 6

 {

 srand(a[k]); // seeding of random number generator

 nxtnode=0;

 distance=0.00;

 while(nxtnode!=dimcol+1) //generation of path form random numbers

 {

 r=(random number from 0 to dimrow+1);

 distance=distance+m[nxtnode][r];

 if(r==0)

 {

 nxtnode=dimcol+1;

 }

 nxtnode=r;

}

 path[k]=distance; // the path variable stores value of total distance for different

random

 //number

 }

}

c.)Algorithm for initializing population

void initiate()

{

 int i,j,k,top,second,temp;

 float b1,b2;

 b1=path[0];

 top=a[0];

 for j=1 to 6

 {

 if(b1<=path[j]) //those numbers are chosed as parents who have greater

distance

 { // covered

 b1=path[j];

 top=a[j]; //top selects the number as parent which has covered the

largest distance

 temp=j;

 }

}

 b2=path[0];

 second=a[0];

 for(j=1;j<7;j++)

 {

 if((b2<=path[j])&&(j!=temp))

 {

 b2=path[j];

 second=a[j];

 }

 }

 tobinary(top,parent1); //the to binary function converts number in binary string

format

 tobinary(second,parent2);

}

4.)Genetic Algorithm:-

The genetic algorithm is a method for solving both constrained and unconstrained op-

timization problems that is based on natural selection, the process that drives biologi-

cal evolution. The genetic algorithm repeatedly modifies a population of individual so-

lutions. At each step, the genetic algorithm selects individuals at random from the

current population to be parents and uses them to produce the children for the next

generation. Over successive generations, the population "evolves" toward an optimal

solution. You can apply the genetic algorithm to solve a variety of optimization prob-

lems that are not well suited for standard optimization algorithms, including problems

in which the objective function is discontinuous, nondifferentiable, stochastic, or high-

ly nonlinear. The genetic algorithm can address problems of mixed integer program-

ming, where some components are restricted to be integer-valued.

The genetic algorithm uses three main types of rules at each step to create the next

generation from the current population:

• Selection rules select the individuals, called parents, that contribute to the population

at the next generation.

• Crossover rules combine two parents to form children for the next generation.

• Mutation rules apply random changes to individual parents to form children.

a.)crossover rule

Crossover:-

void crossover()

{

 int i,j,k,n;

 n=random number from 0 to 7;

 for i=0 to n-1

 {

 child1[i]=parent1[i]; // assignment of certain parts of parent’s binary in the

children

child2[i]=parent2[i]; // so as to create a population for 0’ th generation

 }

 For j=n to 8

 {

 child1[j]=parent2[j]; // assignment of childen

 child2[j]=parent1[j];

 }

 For i=0 to 8

 {

 print("%d",child1[i]); //prints the first child

 }

 For j=0 to 8

{

 printf("%d",child2[j]); //the second children is printed

 }

}

b.) Mutation rule:-

 Algorithm for mutation of children in a particular generation

void mutation()

{

 int i,j,k,n;

 srand(rand());

 n=random number from 0 to 7;

 if(child1[n]==1) //the binary bit is changed in child1

 {

child1[n]=0;

 }

 else

 {

 child1[n]=1;

 }

 if(child2[n]==1) //the binary bit is mutated in child2

 {

 child2[n]=0;

 }

 else

 {

 child2[n]=1;

 }

}

c.) Selection Rule:-

algorithm for Fitness function

void fitness()

{

 int i,j,k,top,second,nxtnode ;

 int gen[4]; //basicly gen array stores the parent and children at index 0,1 and at

index 2,

 float dis[4]; //dis gets distance traveled by respective population

 gen[0]=todecimal(parent1);//toodecimal converts binary to decimal using power

 gen[1]=todecimal(parent2);//function

 gen[2]=todecimal(child1);

 gen[3]=todecimal(child2);

 dis[0]=0.00;

 nxtnode=0;

 printf("\nthe first node for %d is 0",gen[0]); //the distance traversed for parent1

 srand(gen[0]); // is calculated

 while(nxtnode!=dimrow+1)

 {

 k=random number from 0 to dimrow +1;

 if(k==0)

 {

 k=dimrow+1;

 }

 dis[0]=dis[0]+m3[nxtnode][k];

 nxtnode=k;

 }//parent1 ends

 printf("\nthe total distance comes to be %f\n",dis[0]);

dis[1]=0.00; //parent2 distance is again

nxtnode=0; //calculated

 printf("\nthe first node for %d is n0",gen[1]);

 srand(gen[1]);

while(nxtnode!=dimrow+1)

 {

k=(rand())%(dimrow+2);

 if(k==0)

 {

 k=dimrow+1;

 }

 dis[1]=dis[1]+m3[nxtnode][k];

 nxtnode=k;

 printf("\nThe nextnode for %d is %d",gen[1],nxtnode);

 }

 printf("\nthe tota distance comes to be %f\n",dis[1]);

 dis[2]=0.00;

 nxtnode=0;

 printf("\nthe first node for %d is n0",gen[2]); //child1 distance is again calculated

 srand(gen[2]);

 while(nxtnode!=dimrow+1)

 {

 k=(rand())%(dimrow+2);

 if(k==0)

 {

 k=dimrow+1;

 }

dis[2]=dis[2]+m3[nxtnode][k];

 nxtnode=k;

 printf("\nThe nextnode for %d is %d",gen[2],nxtnode);

 }

 printf("\nthe total distance comes to be %f\n",dis[2]);

 dis[3]=0.00;

 nxtnode=0;

 printf("\nthe first node for %d is n0",gen[3]); //child22 distance is again

calculated

 srand(gen[3]);

 while(nxtnode!=dimrow+1)

 {

 k=(rand())%(dimrow+2);

 if(k==0)

 {

 k=dimrow+1;

 }

 dis[3]=dis[3]+m3[nxtnode][k];

 nxtnode=k;

 printf("\nThe nextnode for %d is %d",gen[3],nxtnode);

 }

 printf("\nthe total distance comes to be %f\n",dis[3]);

 top=0; // from here own we are selecting nodes for next generation based on

distance

 for(i=0;i<4;i++)

{

 if(dis[top]<dis[i])

 {

 top=i;

 }

 }

 for(i=0;i<4;i++)

 {

 if((dis[second]<dis[i])&&(i!=top))

 {

 second=i;

 }

 }

 tobinary(gen[top],parent1);//to binary converts integer and store them as binary

value in array and also it can be used to initialize

 tobinary(gen[second],parent2);//parents for next generation

}

 A general flow diagram for genetic algorithm

7. Implementation and Flow chart

Step by step implementation of project and flow chart

1.) We have taken 20*20 matrix we have generated this matrix using random number

generation.

2.) After that we have truncated the matrix using user input.

3.) Then we have normalized the matrix

4.) And then it is put in a Floyd Warshall algorithm the output of which is

 Precursor to control flow graph.

5.) Dedicated node or starting node and end node or exit node are created which is true form

 of control Flow Graph.

6.) After this populations for application of Genetic Algorithm is Created first parents are

created by random number seeds based on distance travelled by seeds.

7.) From parents children genome are created by crossover and they are mutated for

variation

8.) Now the population is iterated in genetic Algorithm cycle where every generation of

population has to pass through process of selection ,crossover, mutation

until desired result is reached.

9.) We have calculated the cyclomatic complexity of CFG. And the generations of genetic

algorithm is bounded by this cyclomatic complexity.

10.) As soon as generation number is more than cyclomatic complexity Genetic Algorithm

ends.

Flow Chart:

 CFG

Creation

Creation

of Matrix

Truncation

of Matrix

Normalization

Floyd

Warshall

Create dedicated

node

Create end

node

Find out distance

traversed by them

Choose two

seeds as parents

Crossover Mutation
Population for

starting flowchart

of Genetic

Algorithm

Fitness Function to

choose fittest

individual in

population

Crossover

Mutation

Population for

next generation

Cyclomatic

Complexity reached End

Generate

Seeds

Yes

No

If matrix doesn’t contain real number

Else

For CFG creation:

For initializing population for Genetic Algorithm:

For Genetic Algorithm:

Creation

of Matrix

Truncation

of Matrix

Normalization
Floyd

Warshall

Create dedicated

node

Create end

node

Generate

Seeds

Find out distance

traversed by them

Choose two

seeds as parents

Crossover

Mutation
Population for

starting flowchart

of Genetic

Algorithm

Fitness Function to

choose fittest

individual in

population

Crossover Mutation
Population for

next generation

Cyclomatic

Complexity reached End

 8. Future Scope

The papers and formulations presented in this report serve as motivation for the

perception of contributions in the formulations. Another aspect of the survey is the

possibility, presented from the modelling of new problems in the area of Software

Testing. As future work, we indicate the modelling and solving of problems in various

areas of Software Engineering, particularly in the area of Software Testing.

Specifically, the resolution of problems related to the activity of regression testing

using heuristics that has not been used yet.

The future approach to this work could enhance the test case or test data generation

for large programs automatically. The different parameters could be added which

gives more optimized test cases and also increases the efficiency of heuristic

techniques. Another perspective area could be the randomly generated test data by

using various paths according to the control flow graph (CFG).Test Cases can be

generated by using various kinds of hybrid heuristic algorithms like BCFA, FABA,

BABC etc. since the test data generated by using Heuristic algorithm is compared

with test data generated by PSOA and BCA and it was found that BCA produces

optimal result in very less time and with more accuracy.

9. Bibliography

1) T. Dyba, “An empirical investigation of the key fa ctors for success in software
process improvement”, IEEE Transactions on Software Engineering, IEEE, May
2005, pp. 410-424.

2) F. G. Freitas, C. L. B. Maia, D. P. Countinho, G. A. L. Campos, J. T. Souza,
“Aplicação de Metaheurísticas em Problemas d a Engenharia de Software: Revisão
de Literatura”, II Congresso Tecn ológico Infobrasil (Infobrasil 2009), 2009.

 3) A. Auer and J. Korhonen. State testing of embed-ded software. In EuroStar-

 95London (UK), 1995.

 4.) www.slideshare.net/KrishnasaiGudavalli/software-requirements-specification

 17173967

 5.) https://en.wikipedia.org/wiki/Program_optimization

 6.) http://shodhganga.inflibnet.ac.in/bitstream/10603/36963/18/18_chapter%208.pdf

http://www.slideshare.net/KrishnasaiGudavalli/software-requirements-specification%20%20%20%20%20%20%20%20%2017173967
http://www.slideshare.net/KrishnasaiGudavalli/software-requirements-specification%20%20%20%20%20%20%20%20%2017173967
https://en.wikipedia.org/wiki/Program_optimization
http://shodhganga.inflibnet.ac.in/bitstream/10603/36963/18/18_chapter%208.pdf

10. Conclusion

The application of heuristics to solve Software Engineering problems is part of a

relatively new field called Search Based Software Engineering.
In this context, the phase of optimization of Software Testing showed an emphasis

over other phases of systems development. Thus, the Search-based Software Testing

subfield was created. The results in this area indicate the potential that this emerging

field of research presents. In this sense, this way of viewing the problems of Software

Engineering, likewise Software Testing, allows the resolution of problems that were

unable to resolve satisfactorily before.
The works described in this report describe this project based on the problems in

optimization of software testing using heuristic technique, mainly in test data

generation, test cases selection and prioritization.

 Heuristic technique is very tool for optimization of test cases or test data. It has

been diversified the problems in a very effective manner for generating the test data

automatically. This project report how the random test cases are generated and

finding the optimal solution to maximize the problem. This project will inspire

researchers to work on the various evolutionary algorithms by applying in computer

science engineering area to generate the effective automated test cases.

