
Tree based collection protocol for WSN.

Report submitted for the partial fulfillment of the requirements for the degree of

Bachelor of Technology in

Information Technology

Submitted by

Ajay Kumar IT/2014/068

Arghyadeep Das IT/2014/070

Ayaz Zafar IT/2014/085

Under the Guidance of Mrs. Moumita Deb

RCC Institute of Information Technology

Canal South Road, Beliaghata, Kolkata – 700 015

[Affiliated to West Bengal University of Technology]

2

Acknowledgement

We would like to express our sincere gratitude to Mrs. Moumita Deb of the department of

Information Technology, whose role as project guide was invaluable for the project. We are

extremely thankful for the keen interestshe took in advising us, for the books and reference

materials provided for the moral support extended to us.

Last but not the least we convey our gratitude to all the teachers for providing us the technical

skill that will always remain as our asset and to all non-teaching staff for the gracious hospitality

they offered us.

Place:RCCIIT, Kolkata

Date:

 ………………………………

 ………………………………

 ………………………………

Department of Information Technology

RCCIIT,Beliaghata,

Kolkata – 700 015,

West Bengal, India

3

Approval

This is to certify that the project report entitled “Tree based collection protocol for WSN.”

prepared under my supervision by Ajay Kumar (IT/2014/068), Arghyadeep Das (IT/2014/070),

Ayaz Zafar (IT/2014/085), be accepted in partial fulfillment for the degree of Bachelor of

Technology in Information Technology.

It is to be understood that by this approval, the undersigned does not necessarily endorse or

approve any statement made, opinion expressed or conclusion drawn thereof, but approves the

report only for the purpose for which it has been submitted.

…………………………………….. ……………………………………

 Dr. Abhijit Das Asst Prof.. Moumita Deb

 H.O.D. Asst. Professor

 Department of Information Technology Department of Information Technology

 RCCIIT RCCIIT

4

INDEX

Contents

1. Introduction

2. Problem Definition

3. Literature Survey

4. SRS (Software Requirement Specification)

5. Planning

6. Design

7.Working

8. Results and Discussion

9. Coding

10. Conclusion and Future Scope

11. References / Bibliography

12. List of Figures

Page Numbers

 5-6

 7

 8

 9

 10

 11-14

 15-17

 18

 18-32

 33

 34

 35

5

1. INTRODUCTION

WSN- Wireless Sensor Networks can be defined as a network of sensor which can communicate

with each other wirelessly[1]. Large numbers of nodes are present in any wireless sensor

network (WSN). Each of these nodes collect data and then forwards collected data to sink.

Various characteristics of wireless sensor networks are 1.Low cost, 2.Ability to handle node

failure, 3. Heterogeneity Of nodes. Due to these characteristics WSN can be used in weather

monitoring, Disaster management, target tracking, homeland Security. WSN can be also used in

Environmental Monitoring and Battlefield Surveillance.

Data collection is a basic task in Wireless Sensor Networks. In data collection sensor nodes

measures the attributes of nodes and send to sink. Data is mainly collected in three stages:

1.Deployment stage: this stage deals with how deployment is done in sensing environment.

2.Data delivery stage: It includes how sensed data from each node is forwarded to the sink.

3.Control message dissemination stage: this is the last stage where collection commands or

control message are disseminated from sink to all sensor nodes.

In many WSN applications, the deployment of sensor nodes is performed in an ad hoc fashion

without careful planning and engineering. Once deployed, the sensor nodes must be able to

autonomously organize themselves into a wireless communication network. Sensor nodes are

battery-powered and are expected to operate without attendance for a relatively long period of

time. In most cases it is very difficult and even impossible to change or recharge batteries for the

sensor nodes. WSNs are characterized with denser levels of sensor node deployment,

higherunreliability of sensor nodes, and sever power, computation, and memory constraints.

Thus, the unique characteristics and constraints present many new challenges for the

development and application of WSNs. Due to the severe energy constraints of large number of

densely deployed sensor nodes, it requires a suite of network protocols to implement various

network control and management functions such as synchronization, node localization, and

network security. The traditional routing protocols have several shortcomings when applied to

WSNs, which are mainly due to the energy-constrained nature of such networks[2].

6

 Even if WSNs were originally thought to have static networking infrastructure, recent

applications require sensing nodes to be mounted on mobile entities (human beings, mobile

robots ,etc...).Think of the case of Wireless Body Area Networks (WBANs) consisting of a set

of wear able to implant sensing devices which can communicate among themselves and or

transmit data from the body to external traffic sinks .WBANs can be indeed useful whenever

there is the need to monitor track nomadic people ,e.g. ,to monitors the battle field(military

applications) ,patient sin nursing institutes (e-health applications),fire brigade sand

policemen(security/safety applications). Whatever application environment, the use of WBANs

and mobile sensors in general, brings into the world of WSNs the problem of effectively

supporting the mobility of single nodes and or groups of nodes. Namely the mobile sensors need

to be continuously connected to the external network to deliver theirs ensured data and vice versa

,an external control point may need to seamlessly contact them mobile sensors.

Paying attention to the various problems related to data collection in WSN we take a simple

approach to connect the sensor nodes of a WSN in a bi-directional way in a tree like structure to

accomplish successful data collection in a wide sensor environment.

 We visualize the nodes of the network as the vertices of a tree and its edges as the connection

links.

7

PROBLEM DEFINITION

As energy required in communication plays a major issue in energy depletion of the sensor node,

we should minimize the number of transmissions along with efficient routing to achieve

extended system lifetime [1]. We consider a wireless sensor system where nodes are

homogeneous and sensed data are highly correlated. A sensor network for continuous monitoring

is a typical example of such a system. In continuous monitoring application, energy constraint

sensors periodically sense the environment and send the observe data to the base station(sink)

with aggregation. In this paper, we propose a tree base routing technique for transferring the data

in minimum hops. We assume that all nodes perform in network data aggregation. Our proposed

approach generates a transmission schedule which contains a collection of routing paths. A

routing path forms a tree that spans all the sensor nodes. A transmission schedule denotes how

data is collected from each sensor and propagated to base station[sink]. It represents a collection

of routing paths that network will follow to maximize lifetime.

8

LITERATURE SURVEY

Application for localization, tracking and monitoring of objects and people in in do or

environments ,usually resort to hybrid sensor networks compose do fixed and mobile nodes.

Hence mobility-aware routing protocols are required to support samples communication from

to them mobile nodes and the data sinks.

The most common approach in the literature to handle mobility in WSNs([4],[5],[6]) consists

in modifications of the Low Energy Adaptive Cluster Hierarchy (LEACH) protocol[10].In

LEACH sensor nodes reorganized into local clusters with on node acting as Cluster-Head(CH)

.The CH is responsible to deliver all the data coming from non-cluster-head nodes to the PAN

coordinator (traffic sink) .Since non-cluster-head nodes have a TDMA schedule computed from

their CH ,they can be switched on only in their time slot ,thus reducing energy consumption .On

the contrary ,since cluster heads must be always active in order to receive data from the cluster

and forward it to the PAN coordinator, their lifetime is limited .To avoid the death of a fixed set

of sensor nodes, LEACH introduces a randomized rotation of the cluster heads in order to

distribute the energy consumption among all nodes in the network.

In literature so far many hybrid metrics have been proposed [8][9]. We studied their merits and

demerits. The first and foremost point is that all these metrics are combined with at most two

estimators whether RSSI and PRR or SNR and LQI. Except SNR the noise floor is not taken into

account. As discussed before a hybrid metric should closely relate to PRR and without PRR this

can’t be achieved. In general LEACH and its modified versions supporting mobile nodes are

based on single hop communication ,so they work under the assumption that all the nodes in the

network can reach directly the Sink with the help of the path that has been created. This

assumption is seldom realistic especially in do or environments where walls, furniture and people

limit the radio range of wireless devices and multi-hop routing is unquestionably necessary.

 As we are to deal with a flat bed routing protocol we also studied protocols like the AODV[10]

to compare our results and analyze.

9

SRS (Software Requirement Specification)

OMNET++ is an object-oriented modular discrete event network simulation framework. It has a

generic architecture, so it can be (and has been) used in various problem domains:

• modelling of wired and wireless communication networks

• Protocol modelling

• modelling of queuing networks

• modelling of multiprocessors and other distributed hardware systems

• validating of hardware architectures

• evaluating performance aspects of complex software systems

• in general, modelling and simulation of any system where the discrete event approach is

suitable, and can be conveniently mapped into entities communicating by exchanging messages.

OMNET++ itself is not a simulator of anything concrete, but rather provides infrastructure and

tools for writing simulations. One of the fundamental ingredients of this infrastructure is

component architecture for simulation models. Models are assembled from reusable components

termed modules. Well-written modules are truly reusable, and can be combined in various ways

like LEGO blocks.

Castalia is a simulator for Wireless Sensor Networks (WSN), Body Area Networks and

generally networks of low-power embedded devices. It is based on the OMNET++ platform and

used by researchers and developers to test their distributed algorithms and/or protocols in a

realistic wireless channel and radio model, with a realistic node behavior especially relating to

access of the radio. Castalia uses the lognormal shadowing model as one of the ways to model

average path loss, which has been shown to explain empirical data in WSN.[1] It also models

temporal variation of path loss in an effort to capture fading phenomena in changing

environments (i.e., the nodes or parts of the environment are moving). Castalia's temporal

variation modeling is designed to be fitted to measured data instead of making specific

assumptions on the creation of fast fading.

https://en.wikipedia.org/wiki/Network_simulator
https://en.wikipedia.org/wiki/Wireless_Sensor_Networks
https://en.wikipedia.org/wiki/Body_Area_Network
https://en.wikipedia.org/wiki/Low-power_communication_device
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/OMNeT%2B%2B
https://en.wikipedia.org/wiki/Log-distance_path_loss_model
https://en.wikipedia.org/wiki/Castalia_(simulator)#cite_note-1
https://en.wikipedia.org/wiki/Fading

10

Planning

The basic structure of a connected Wireless Sensor Network is formed similar to the figure of a

tree. So to achieve this type of a structure and connect nodes with each other so that the best

possible and fast connection is achieved. Various routing protocols make use of different tree

based structure to connect the nodes.

 Here we plan to construct a routing protocol for a collection of nodes in a particular

environment. We are to use different factors on which wireless data transmission can be

achieved in an optimized manner. Whenever a node is planted it runs on a cell or battery that has

to be used wisely to ensure its long battery life as a battery replacement at all distant nodes are

not possible. There are various estimators which give us data about the link or broadcast quality

of the nodes.

 We plan to consider the remaining energy of each node that makes a transaction with another

node. This measure of the remaining energy of the node would be used for parent selection by

any random node. We studied whenever a transaction of data packets takes place energy is lost

and link quality depreciates. Thus keeping an eye to these factors we combine the concept of

remaining energy with this. The sink behaves as the root node which has got the virtue of

becoming a root node for all tree like structures that can be formed on the given network

topology.

We are considering a network layout or topology that has several nodes and a sink. The sink

initiates the first event of the routing algorithm. It broadcasts a sink message, whenever a node

receives this message it becomes the first level nodes. The first level nodes basically act like

cluster heads which can connect to the sink directly. These nodes then start the Topology setup

process by broadcasting their level. The nodes first follow an algorithm to set the level of each

node in the hierarchy. This leveling helps the nodes to decide its parent at time of tree building.

This parent selection or tree building is done on the basis of the leveling already created. Furthur

the best quality parent is selected from a set of higher level nodes by comparing them on the

basis of their remaining energy.

11

DESIGN

Considering various tree based protocols and the methods used by them a new algorithm based

on tree topology was written. To implement this algorithm in a network stimulation environment

firstly a network stimulator “OMNET ++” was used as the base to run all stimulations. As we

have used parameters that relate to the remaining energy of the nodes we used the Energy

Manager- module of the “Green Castalia” framework to implement our algorithm. To code and

stimulate the algorithm on a simulator mainly three different files had to be created, first one is

the “.ned” or Network Description file that has all the data regarding the topology of the

network. The second one is code which defines the work procedure of an individual node. The

algorithm is coded on C++ language. This file is known as the source file of the stimulation. The

last requirement of the implementation process is the stimulation environment setup file, in

OMNET++ a file named “omnetpp.ini” is responsible for configuring the environment and

setting up all the parameters.

 START

BROADCAST(SINK MESSAGE)

SET PARENT PROBABILITY(PP) = 1

BROADCAST(TOPOLOGY SETUP

MESSAGE(PP))

 FOR EACH NI RECEIVES(TOPOLOGY SETUP

MESSAGE)

SET NI.PP = (T.S.M).PP + 1

MUST BE BUSY OR ENERGY MUST BE ZERO.

FOR EACH

NODE

RECEIVE(SINK

MESSAGE)

 START

BROADCAST(SINK MESSAGE)

SET PARENT PROBABILITY(PP) = 1

BROADCAST(TOPOLOGY SETUP

MESSAGE(PP))

 FOR EACH NI RECEIVES(TOPOLOGY SETUP

MESSAGE)

SET NI.PP = (T.S.M).PP + 1

MUST BE BUSY OR ENERGY MUST BE ZERO.

FOR EACH

NODE

RECEIVE(SINK

MESSAGE)

Fig1: Flowchart for level

setting.

12

NODE RECEIVE BROADCAST(SEARCH

PARENT) MESSAGE

RECEIVING NODE REPLY WITH(PP ,

REMAINING ENERGY)

NODE RECEIVING REPLY MESSAGE

IF(N.PP >= RM.PP)

CHECK

THEN

CHECK

IF(N.MAX RE <= RM.RE)

SET PARENT FLAG =1;

SET (MAX RE = RM. RE)

CREATE LINK

START

BROADCAST(SEARCH PARENT)

Fig2: Flowchart for tree creation.

13

ALGORITHM FOR NODE LEVEL SETTING.

{

SN = SINK NODE ,

N = SET OF NODES ,

SM = SINK MESSAGE ,

PP = PARENT PROBABILITY ,

T_M_S = TOPOLOGY SETUP MESSAGE

}

BEGIN
1. SN -> Broadcast(SM)

2. For each Ni € N receive (SM)

{

Set PP = 1

Ni -> Broadcast(T_S_M (PP))

}

3. For each Ni € N receive (T_S_M)

{

Set Ni.PP = (T_S_M).PP + 1

}

START

NODE N WANT TO SEND PACKET_CHECK

IF(PARENT_FLAG

==1)

SEND PACKET TO PARENT RUN PARENT SELECTION ALGO

Fig3: Packet Sending Flowchart

14

ALGORITHM FOR PARENT SELECTION AND TREE BUILDING.
{

SP = SEARCH PARENT MESSAGE ,

N = SET OF NODES ,

RE = REMAINING ENERGY ,

PP = PARENT PROBABILITY ,

}

BEGIN

1. Node Ni -> Broadcast(SP)

2. For each Nj € N receives(SP)

{

Reply with RM(PP , RE)

}

3. For each Nj € N receives(RM) check

 If(Nj.PP >= RM.PP)

 Then check

 If(Nj. Max RE <= RM.RE)

 Set parent flag=1;

 Set max RE = RM.RE;

 Create link;

ALGORITHM FOR PACKET SENDING.

BEGIN

1. For any node Nj € N which want to send packet check

If(parent_flag == 1)

 {

 Send packet to parent

 }

 Else

 {

 Run parent selection algorithm

 }

2. For any node Nk € N which receive packet check

If

{

 Nk.PP == 0;

 Break;

 }

Else if(Nk.PP > 0)

 Goto 1.

15

WORKING:

Node leveling:
The routing protocol works on the above said algorithm, at the start all the nodes initialize and

the sink node Broadcasts a message tagged as “sink message”. Whenever this message is

received by a primary node its Parent Probability (PP) is set as 1. This means that all the nodes

that receive the “sink message” are the closest to the sink or the first level parents. These first

level nodes act like cluster heads and start broadcasting a message tagged as

TOPOLOGY_SETUP_MESSAGE (T_S_M) which contains the PP of the node. Any node in the

network that receives this type of a message sets its PP one more than the PP of the node from

which the message was received. This process completes the leveling of the nodes according to

their probable levels in the tree.

Parent selection and tree building:

After the leveling of all the nodes are complete the nodes now start following an algorithm to

select their parent and establish the link. To do this the nodes broadcast a message tagged as

“Search Parent (SP)”. Whenever a node gets such a message it replies back with a message

called the “Reply message (RM)”, this message contains the PP of the replying node and its

Remaining Energy (RE).

When the node which had sent the search parent message accepts the first reply message its sets

the replying node as its parent if the PP of the replying node is smaller than the PP of the sending

node. This ensures that a node distant from the sink always selects a node more closer to the sink

than itself. The remaining energy received with the reply message is stored in a variable named

as “Max_RE” Now in a much bigger scenario where the node density is higher a node

broadcasting the search parent message receives more than one reply from nodes of higher

levels. The final parent selection from the set of all replying nodes is done on the basis of the

remaining energy of the replying node. After the first replying node is set as parent if any other

reply message is received with lesser “PP” value then the remaining energy values of the current

parent and the new reply message are compared, the node with the greater remaining energy

value is set as parent and the link is established. This completes the procedure of parent

selection. This results in a tree like linkage pattern where the sink acts as the root node.

16

Packet sending:

 Once the tree is created and every node is linked with its most suitable parent the packet sending

procedure starts. Whenever a node has a packet ready to send it checks if its parent has already

been set, if true it passes the packet to the destination or parent node otherwise runs the parent

selection algorithm. This parent node now acts as a node ready to transfer its packet to a higher

level. This procedure of packet handover is carried out until the packet reaches the sink or

reaches to a level 0 node.

The following figures (Fig1, Fig2) explain two different steps in the tree building procedure the

first one is the leveling scenario and the second one shows the formation of the tree. The figures

clearly explain how the network topology is created and the tree like structure is found. After the

creation of this tree all the sensor nodes have a fixed parent to which it sends its packet.

PP=1

PP=2

PP=3

Fig 4: Leveling Scenario.

Sink Node Sensor Nodes

17

Sink node Sensor node

Fig 5: Tree topology setup

18

RESULT

Simulation experiments were conducted to analyze the performance of our tree routing protocol

using the Castalia Framework [8], which is a widely used network simulator for WSNs based on

OMNET++ simulator [9]. The simulations were carried out and repeated 20 times with different

random seed numbers in order to obtain a confidence interval of 95%. Due to limited available

nodes in the testbed, simulation experiments were conducted to evaluate the Tree routing

protocol and compare its performance with AODV [10] in terms of energy-efficiency, latency

and data delivery in a large-scale scenario, i.e., using a monitoring area of 100 m × 100 m and up

to 100 nodes. AODV is a standard reference, which can be considered as a benchmark solution

for flat routing protocols and scenarios. The simulation environment was created and the

topology setup was successful. Simulation results were compared with other widely accepted

protocols that are generally used for communication routing processes and it was found to be

working fine on various topologies defined by us. The protocol runs smoothly without missing

out any node in the topology defined for that simulation. The screenshots of one fully completed

simulation are attached with this documents. The result is formed as a trace file in the

simulations folder every time the simulation is run and completed. These trace files are then

analyzed and data about the efficiency of the protocol is extracted from it.

Screenshots

Fig6: Screenshot (i)

19

Code: Source code for actions of an individual node.

#include "TreeRouting.h"
#include "ResourceManager.h"
#include "VirtualEnergyPredictor.h"
#include "VirtualEnergyManager.h"
#include "VirtualEnergyStorage.h"
#include "Battery.h"

Define_Module(TreeRouting);

void TreeRouting::startup()
{
 /*--- The .ned file's parameters ---*/
 //percentage = par("percentage");
 //roundLength = par("roundLength");
 isSink = par("isSink");
 //slotLength = par("slotLength");

Fig7: Screenshot (ii)

20

 advPacketSize = par("advPacketSize");
 joinPacketSize = par("joinPacketSize");
 tdmaPacketSize = par("tdmaPacketSize");
 dataPacketSize = par("dataPacketSize");
 applicationID = par("applicationID").stringValue();
 t = par("t");

 /*--- Class parameters ---*/
 //CHcandidates.clear();
 //clusterMembers.clear();
//AddM
// CHCompetitors.clear();
 //CHNeighbors.clear();
//End
 //roundNumber=0;
// probability = 0;
 isCH = false;
 endFormClus = false;
 //isCt = false;
 remEnergy = 0;
 //probability = 0.40;
 //RComp = 0;
 //CHCompetitors.clear();
 //bool found = false;
 //flag = 0;
 //den = 0;
 //timer = 0;
//AddM To access remaining Energy
 engyMgr =check_and_cast<VirtualEnergyManager*>(getParentModule()-
>getParentModule()->getSubmodule("ResourceManager")-
>getSubmodule("EnergySubsystem")->getSubmodule("EnergyManager"));
// remEnergy = engyMgr->getCurrentEnergy();
// nodeC = engyMgr->getNodeCategory();
//AddM To access Max energy of Battery
 //VirtualEnergyStorage* engyStore
=check_and_cast<VirtualEnergyStorage*>(getParentModule()->getParentModule()-
>getSubmodule("ResourceManager")->getSubmodule("EnergySubsystem")-
>getSubmodule("EnergyStorage")->getSubmodule("RechBatteries",0));

 //maxEnergy=engyStore->getMaxEnergy();
//trace() << "MAx energy is" << maxEnergy;
// maxEnergy=1800;
//AddM To access amount of predicted Energy

21

// VirtualEnergyPredictor* predictorModule =
check_and_cast<VirtualEnergyPredictor*>(getParentModule()->getParentModule()-
>getSubmodule("ResourceManager")->getSubmodule("EnergySubsystem")-
>getSubmodule("EnergyPrediction"));

// predTime = roundLength;
// trace() << "prediction Time" << predTime;
// predHarvPwr = predictorModule->getPrediction(predTime);
 //predHarvPwr = 0.015;

//check how to set timer
// if(!isSink) setTimer(START_ROUND, netSetupTimeout);

//AddM

 cModule *appModule = getParentModule()->getParentModule()-
>getSubmodule("Application");
 if (appModule->hasPar("isSink"))
 isSink = appModule->par("isSink");
 currentLevel = tmpLevel = isSink ? 0 : NO_LEVEL;
 currentSinkID = tmpSinkID = isSink ? self : NO_SINK; //whether necessary

 isConnected = (isSink) ? true : false; //check
 isScheduledNetSetupTimeout = false; //Relation between isconnected????
 currentSequenceNumber = 0; //what is the use
 isJoin = false;
 knwRelay = false;
 if (isSink && (roundNumber == 0))
 sendTopologySetupPacket();

 //readXMLparams();
}
// AddM

void TreeRouting::sendTopologySetupPacket()
{
 TreeRoutingPacket *setupPkt =
 new TreeRoutingPacket("Tree routing setup packet", NETWORK_LAYER_PACKET);
 setupPkt->setTreeRoutingPacketKind(TREE_ROUTING_TOPOLOGY_SETUP_PACKET);
 setupPkt->setSource(SELF_NETWORK_ADDRESS);
 setupPkt->setDestination(BROADCAST_NETWORK_ADDRESS);
 setupPkt->setSinkID(currentSinkID);
 setupPkt->setSenderLevel(currentLevel);
 toMacLayer(setupPkt, BROADCAST_MAC_ADDRESS);

22

}

void TreeRouting::fromApplicationLayer(cPacket *pkt, const char *destination) // Add control
packet
{
 if(!isSink) //if its not a sink
 {
 string dst(destination);
 TreeRoutingPacket *netPacket = new TreeRoutingPacket("Tree routing data
packet", NETWORK_LAYER_PACKET);
 netPacket->setSource(SELF_NETWORK_ADDRESS);
 netPacket->setDestination(destination);
 encapsulatePacket(netPacket, pkt);
 toMacLayer(netPacket, resolveNetworkAddress(destination)); //??
 /*if (!isCH && endFormClus)
 {
 CHInfo info = *CHcandidates.begin();
 stringstream buffer;
 buffer << info.src;
 string dst = buffer.str();
 netPacket->setDestination(dst.c_str());
 bufferPacket(netPacket);
 }
 else if (!isCH && !endFormClus)
 {
 tempTXBuffer.push(netPacket);
 }

 else if (isCH)
 {
 bufferAggregate.push_back(*netPacket);
 }*/
 }
}

void TreeRouting::fromMacLayer(cPacket *pkt, int macAddress, double rssi, double lqi){
 TreeRoutingPacket *netPacket = dynamic_cast <TreeRoutingPacket*>(pkt);

 if (!netPacket)
 return;

 switch (netPacket->getTreeRoutingPacketKind()) {

23

// AddM
 case TREE_ROUTING_TOPOLOGY_SETUP_PACKET:{
 if (isSink)
 break;
 if (!isScheduledNetSetupTimeout) {
 isScheduledNetSetupTimeout = true;
 setTimer(TREE_ROUTING_TOPOLOGY_SETUP_TIMEOUT, 0.5);
 tmpLevel = NO_LEVEL;
 tmpSinkID = NO_SINK;
 }
 if (tmpLevel == NO_LEVEL || tmpLevel > netPacket->getSenderLevel()) {
 tmpLevel = netPacket->getSenderLevel();
 tmpSinkID = netPacket->getSinkID();
 }
 break;
 }

//check

 }
}

void TreeRouting::timerFiredCallback(int index)
{
 switch (index) {
//AddM for checking

 case TREE_ROUTING_TOPOLOGY_SETUP_TIMEOUT:
 {
 if (index != TREE_ROUTING_TOPOLOGY_SETUP_TIMEOUT)
 return;
 isScheduledNetSetupTimeout = false;
 if (tmpLevel == NO_LEVEL) {
 setTimer(TREE_ROUTING_TOPOLOGY_SETUP_TIMEOUT, 0.6);
 isScheduledNetSetupTimeout = true;
 }
 else if (currentLevel == NO_LEVEL) {
 //Broadcast to all nodes of currentLevel-1
 currentLevel = tmpLevel + 1;
 currentSinkID = tmpSinkID;

 if (!isConnected) {
 isConnected = true;

24

// sendControlMessage(MPRINGS_CONNECTED_TO_TREE);
 trace() << "Connected to " << currentSinkID << " at level " <<
currentLevel;
 setTimer(REFRESH_HELLO_TIMER,1.75);
// if (!TXBuffer.empty())
// processBufferedPacket();
 } else {
// sendControlMessage(MPRINGS_TREE_LEVEL_UPDATED);
 trace() << "Reconnected to " << currentSinkID << " at level " <<
currentLevel;
 }
 sendTopologySetupPacket();
 }

 tmpLevel = isSink ? 0 : NO_LEVEL;
 tmpSinkID = isSink ? self : NO_SINK;
 break;
 }
// End
 }

}

Code: Definition of user defined header files used’

#ifndef _TREEROUTING_H_

#define _TREEROUTING_H_

#include <list>

#include <map>

#include <queue>

#include <vector>

#include <omnetpp.h>

#include <algorithm>

#include <string>

#include <math.h>

#include <stdlib.h>

#include <stdio.h>

#include <iostream>

#include <sstream>

#include "VirtualRouting.h"

#include "VirtualApplication.h"

#include "TreeRoutingPacket_m.h"

#include "ApplicationPacket_m.h"

25

#include "NoMobilityManager.h"

#include "ResourceManager.h"

#define NO_LEVEL -110

#define NO_SINK -120

using namespace std;

enum TreeRoutingTimers {

 START_ROUND = 1,

 SEND_ADV = 2,

 JOIN_CH = 3,

 MAKE_TDMA = 4,

 START_SLOT = 5,

 END_SLOT = 6,

 TREE_ROUTING_TOPOLOGY_SETUP_TIMEOUT = 7,

 ADJACENT_CH_ADVERTISEMENT = 8,

 START_COMPETITION = 9,

 FINISH_COMPETITION = 10,

 SEND_QUIT = 11,

 TREE_ROUTING_DENSITY_CAL_TIMER = 12,

 REFRESH_HELLO_TIMER = 13,

 CANCEL_HELLO_TIMER = 14,

 };

struct CHInfo

{

 int src;

 double rssi;

 double currentLevel;

};

//AddM

struct CHCompete{

 int src; //sorgente (ID)

 double RComp;

 double currentLevel; //raggio di competenza

};

struct CHAdjacent{

 int src;

 double remainingEnergy;

 double currentLevel;

 };

26

struct Neighbor{

 int src;

 int density ;

 };

class VirtualEnergyManager;

class VirtualEnergyPredictor;

class VirtualEnergyStorage;

class TreeRouting : public VirtualRouting {

private:

 string applicationID;

 int advPacketSize;

 int tdmaPacketSize;

 int dataPacketSize;

 int joinPacketSize;

// For topology setup

 double netSetupTimeout;

 double denSetupTimeout;

 double maxPower;

 double sensibility;

 double aggrConsumption;

 double slotLength;

 int clusterLength;

 double percentage;

 double probability;

 int den;

 int roundNumber;

 int dataSN;

 bool isCH;

 bool isSink;

 bool isCt;

 bool endFormClus;

 int flag;

 double t ;

 bool isJoin;

 bool knwRelay;

 vector<RoutingPacket> bufferAggregate;

 vector<int> powers;

 queue <cPacket *> tempTXBuffer;

 vector <int> clusterMembers;

 list <CHInfo> CHcandidates;

27

 list <Neighbor> NeighborList;

//AddM

 ResourceManager* resMgrModule;

 VirtualEnergyManager* engyMgr;

 VirtualEnergyStorage* engyStore;

 VirtualEnergyPredictor* predictorModule;

 double remEnergy;

 double maxEnergy;

 char nodeC;

 simtime_t predTime,roundLength;

 double predHarvPwr;

 double timer;

 bool found;

 bool newTentativeCH;

 double RComp;

 double rNumber;

 int currentSinkID;

 int currentLevel;

 int tmpSinkID;

 int tmpLevel;

 //is a .ned file parameter of the Application module

 bool isConnected; //attached under a parent node

 bool isScheduledNetSetupTimeout;

 list <CHCompete> CHCompetitors; //aggiunto da EEUC

 list <CHAdjacent> CHNeighbors;

 CHAdjacent nextRelay;

 CHAdjacent nextRelayForward;

// CHInfo nextR;

 CHInfo nextRe;

 map<string, int> hmeluc;

protected:

 void startup();

 void fromApplicationLayer(cPacket *, const char *);

 void fromMacLayer(cPacket *, int, double, double);

 void timerFiredCallback(int);

 void processBufferedPacket();

 void sendTopologySetupPacket();

 void sendHelloMessage();

 void print_neighbor();

 void sendAggregate();

 void setPowerLevel(double);

 void setStateSleep();

 void setStateRx();

 void levelTxPower(int);

28

 void readXMLparams();

};

bool cmpaRssi(CHInfo a, CHInfo b);

bool compLevel(CHAdjacent a, CHAdjacent b);

#endif

Code: Definition of Topology Setup Message.

cplusplus {{

#include "RoutingPacket_m.h"

}}

class RoutingPacket;

enum TreeRoutingPacket_Type

{

 TREE_ROUTING_ADV_PACKET = 1;

 TREE_ROUTING_JOIN_PACKET = 2;

 TREE_ROUTING_TDMA_PACKET = 3;

 TREE_ROUTING_DATA_PACKET = 4;

 TREE_ROUTING_TOPOLOGY_SETUP_PACKET = 5;

 TREE_ROUTING_AGGREGATED_DATA_PACKET = 6;

 TREE_ROUTING_ADJACENTCH_PACKET = 7;

 TREE_ROUTING_COMPETECH_PACKET = 8;

 TREE_ROUTING_FINALHEAD_PACKET = 9;

 TREE_ROUTING_QUITELECTION_PACKET = 10;

 TREE_HELLO_MESSAGE_PACKET = 11;

};

packet TreeRoutingPacket extends RoutingPacket

{

 int TreeRoutingPacketKind enum (TreeRoutingPacket_Type);

 int schedule[];

// char nodeCategory;

 int sinkID; // 2 bytes

 int senderLevel;

 double remainingEnergy;

 double RComp;

};

29

Code: Simulation Environment Configuration File.
//network

include ../Parameters/Castalia.ini

include ../Parameters/MAC/CSMA.ini

sim-time-limit = 100s

SN.field_x = 50 #40

SN.field_y = 50 #10

SN.numNodes = 30

SN.deployment = "[0..29]->uniform"

//SN.node[0].xCoor = 50

//SN.node[0].yCoor = 70

//SN.node[1].xCoor = 10

//SN.node[1].yCoor = 10

SN.node[2].xCoor = 35

SN.node[2].yCoor = 10

//SN.node[3].xCoor = 15

//SN.node[3].yCoor = 20

//SN.node[4].xCoor = 27

//SN.node[4].yCoor = 20

//SN.node[5].xCoor = 50

//SN.node[5].yCoor = 17

//SN.node[6].xCoor = 36

//SN.node[6].yCoor = 30

//SN.node[7].xCoor = 70

//SN.node[7].yCoor = 24

//SN.node[8].xCoor = 80

//SN.node[8].yCoor = 15

//SN.node[9].xCoor = 90

//SN.node[9].yCoor = 27

30

//SN.node[10].xCoor = 15

//SN.node[10].yCoor = 40

//SN.node[11].xCoor = 30

//SN.node[11].yCoor = 45

//SN.node[12].xCoor = 55

//SN.node[12].yCoor = 40

//SN.node[13].xCoor = 70

//SN.node[13].yCoor = 45

//SN.node[14].xCoor = 95

//SN.node[14].yCoor = 45

//SN.node[15].xCoor = 80

//SN.node[15].yCoor = 55

//SN.node[16].xCoor = 55

//SN.node[16].yCoor = 58

//SN.node[17].xCoor = 27

//SN.node[17].yCoor = 60

//SN.node[18].xCoor = 15

//SN.node[18].yCoor = 60

//SN.node[19].xCoor = 44

//SN.node[19].yCoor = 50

//SN.node[20].xCoor = 89

//SN.node[20].yCoor = 65

//SN.node[21].xCoor = 70

//SN.node[21].yCoor = 66

//SN.node[22].xCoor = 38

//SN.node[22].yCoor = 70

//SN.node[23].xCoor = 52

//SN.node[23].yCoor = 79

//SN.node[24].xCoor = 20

//SN.node[24].yCoor = 75

31

//SN.node[25].xCoor = 30

//SN.node[25].yCoor = 85

//SN.node[26].xCoor = 12

//SN.node[26].yCoor = 88

//SN.node[27].xCoor = 55

//SN.node[27].yCoor = 90

//SN.node[28].xCoor = 70

//SN.node[28].yCoor = 95

//SN.node[29].xCoor = 80

//SN.node[29].yCoor = 85

SN.node[*].Communication.Radio.mode = "normal"

// Traces

SN.wirelessChannel.collectTraceInfo = false

SN.node[*].Communication.Radio.collectTraceInfo = false

SN.node[*].Communication.MAC.collectTraceInfo = false

SN.node[*].Communication.Routing.collectTraceInfo = true

SN.node[*].Application.collectTraceInfo = true

SN.node[*].SensorManager.collectTraceInfo = false

SN.node[*].ResourceManager.collectTraceInfo = false

//MAC

#-----CSMA-CA-----#

SN.node[*].Communication.MACProtocolName = "TunableMAC"

SN.node[*].Communication.MAC.listenInterval = 10

SN.node[*].Communication.MAC.dutyCycle = 0.1

SN.node[*].Communication.MAC.beaconIntervalFraction = 1.0

SN.node[*].Communication.MAC.phyDataRate = 250

SN.node[*].Communication.MAC.phyFrameOverhead = 6

SN.node[*].Communication.MAC.macPacketOverhead = 9

//Routing

32

SN.node[*].Communication.RoutingProtocolName = "TreeRouting"

SN.node[*].Communication.Routing.netBufferSize = 1000

SN.node[0].Communication.Routing.isSink = true

SN.node[*].Communication.Routing.slotLength = 0.2

SN.node[*].Communication.Routing.roundLength = 30s

SN.node[*].Communication.Routing.percentage = 0.05

SN.node[*].Communication.Routing.powersConfig = xmldoc("powersConfig.xml")

// Application

SN.node[*].ApplicationName = "ThroughputTest"

SN.node[*].Application.packet_rate = 1

SN.node[*].Application.constantDataPayload = 2000

// Wireless Channel

SN.wirelessChannel.onlyStaticNodes = true

SN.wirelessChannel.sigma = 0

SN.wirelessChannel.bidirectionalSigma = 0

SN.wirelessChannel.pathLossExponent = 2.0 # Free Space

// Radio

SN.node[*].Communication.Radio.RadioParametersFile = "../Parameters/Radio/CC2420.txt"

SN.node[*].Communication.Radio.TxOutputPower = "-10dBm"

33

Conclusion and Future Scope

This article has presented a tree based routing protocol together with load balance scheme based

on Remaining energy for applications on Wireless Sensor network, such as automation of

comfortable homes and offices, healthcare, environmental monitoring, and smart parking. This

tree routing protocol combines a reliable scheme for route discovery and load balance

mechanism, which provides high reliability, QoS-awareness and energy-efficiency. Moreover, it

proposes an end-to-end route selection scheme based on cross-layer information with a minimal

overhead. Nodes become energy efficient by sending the residual energy to their neighboring

nodes with the aid of a piggyback and on-demand scheme.

34

Reference

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,”

Communications Magazine, IEEE, vol. 40, no. 8, pp. 102 – 114, aug. 2002.

[2] Routing protocol in WSN – A Survey by Shio Kumar Singh, Mk Singh, Dk singh.

[3] LVM- Designing a Link Quality Estimator for Sensor Nodes by combining available

Estimators- Moumita Deb, Subhobrata Roy, Bidushi Saha, Paromita Das, Moumita Das

 [4] D.-S. Kim and Y.-J. Chung, “Self-Organization Routing Protocol Sup- porting Mobile

Nodes for Wireless Sensor Networks,” in Computer and Computational Sciences, 2006.

IMSCCS ’06. First International Multi- Symposiums on, 2006.

[5] G. Santhosh Kumar, M. V. Vinu Paul, and K. Poulose Jacob, “Mobility Metric based

LEACH-Mobile Protocol,” in Advanced Computing and Communications, 2008. ADCOM

2008. 16th International Conference on, 2008

[6] L. Nguyen, X. Defago, R. Beuran, and Y. Shinoda, “An Energy Efficient Routing Scheme

for Mobile Wireless Sensor Networks,” in Wireless Communication Systems. 2008. ISWCS ’08.

IEEE International Sym- posium on, 2008.

[7] R. Michele, Junaid Ansari, Janne Riihijarvi. April 1, 2008. “Designing a Reliable and Stable

Link Quality Metric for Wireless Sensor Networks Department of Wireless Networks”,

REALWSN’08, April 1, 2008

[8] . Boulis, A. Castalia, A Simulator for Wireless Sensor Networks and Body Area Networks,

Version 2.2. User’s Manual; NICTA: Canberra, Australia, 2009.

[9] . Varga, A. The OMNeT++ Discrete Event Simulation System. In Proceedings of the

European Simulation Multiconference (ESM 2001), Prague, Czech Republic, 6–9 June 2001.

[10] AODV ROUTING PROTOCOL WORKING PROCESS Asma Ahmed, A. Hanan, Izzeldin

Osman

35

LIST OF FIGURES

Figure number Figure name

Fig1 Flowchart for leveling.

Fig2 Flowchart for tree creation.

Fig 3 Packet Sending Flowchart.

Fig4 Leveling scenario.

Fig5 Tree Topology Setup

Fig6 Screenshot(i)

Fig7 Screenshot (ii)

	Approval

