
1 | P a g e

1. INTRODUCTION

Data mining is a computing process that extracts hidden predictive information and

patterns from large amount of raw data. Also referred to as "knowledge discovery in

databases," the term "data mining" wasn’t coined until the 1990s.Its foundation

comprises three intertwined scientific disciplines: statistics (the numeric study of data

relationships), artificial intelligence (human-like intelligence displayed by software

and/or machines) and machine learning (algorithms that can learn from data to make

predictions). It uses a variety of data analysis tools to discover patterns and Relationships

in data that may be used to make valid predictions. The newest answer to increase

revenues and to reduce costs is data mining. The potential returns are enormous.

Innovative organizations worldwide are already using data mining to locate and appeal to

higher-value customers, to reconfigure their product offerings to increase sales, and to

minimize losses due to error.

2 | P a g e

2. PROBLEM DEFINITION

Understanding the project objectives and requirements from a domain perspective and then

converting this knowledge into a data science problem definition with a preliminary plan

designed to achieve the objectives. Data science projects are often structured around the specific

needs of an industry sector or even tailored and built for a single organization. A successful

data science project starts from a well defined question or need.

3 | P a g e

3. Measures of Association Rules

Essentially, association mining is about discovering a set of rules that is shared

among a large percentage of the data (Zaki, 2000). Association rules mining tend

to produce a large number of rules. The goal is to find the rules that are useful to

users. There are two ways of measuring usefulness, being objectively and

subjectively.

Objective measures involve statistical analysis of the data, such as support and

confidence (Agrawal et al., 1993).

3.1 Support

The rule X ⇒ Y holds with support s if s% of transactions in D contain X ∪ Y.

Rules that have a s greater than a user-specified support is said to have minimum

support.

TID ITEMS Support = Occurence / Total Support

1

ABC

Total Support = 5

Support {AB} = 2 / 5 = 40%

Support {BC} = 3 / 5 = 60%

Support {ABC} = 1 / 5 = 20%

2 ABD

3 BC

4 AC

5 BCD

4 | P a g e

3.2 Confidence

The rule X ⇒ Y holds with confidence c if c% of the transactions in D that

contain X also contain Y. Rules that have a c greater than a user-specified

confidence is said to have minimum confidence.

TID

ITEMS

Given X ⇒ Y

Confidence = Occurrence {Y} /

Occurrence {X}

1

ABC

Confidence {A ⇒ B} = 2 / 3 = 66%

Confidence {B ⇒ C} = 3 / 4 = 75%

Confidence {AB ⇒ C} = 1 / 2 = 50%

2 ABD

3

BC

4 AC

5 BCD

5 | P a g e

4. LITERATURE SURVEY

4.1. CP-Tree:

Frequent pattern mining is a heavily researched area in the field of data mining with wide range

of applications. Finding a frequent pattern (or items) plays as essentials role in data mining .

Efficient algorithm to discover frequent patterns is essential in data mining research. A number

of research works have been published that presenting new algorithm or improvements on

existing algorithm to solve data mining problem efficiently. In that Apriori algorithm is the first

algorithm proposed in this field. By the time of change or improvement in Apriori algorithm, the

algorithms that compressed large database in to small tree data structure like FP tree, CAN tree

and CP tree have been discovered . These algorithms are partitioned based , divide and conquer

method used that decompose mining task in to smaller set of task for mining confined patterns in

conditional database, which dramatically reduce search space. In this paper I propose a new

novel tree structure - extension of CP tree that extract all frequent pattern from transactional

database. This tree structure constructs compact prefix free structure with one database scan and

it provide same mining performance as FP growth technique by efficient tree restructuring

process. It also supports interactive and incremental mining without rescan the original database.

ADV:-Extracting hidden patterns from existing data is the process of data mining. The data is in
the structured form and defined to make it compatible for processing .

DISADV:- According to NIST data representation limits the capacity of using traditional
algorithms to conduct effective processing and analysis.

Reference from : Bezdek, J. C., & Pal, S. K. (1992). Fuzzy models for pattern recognition:

Methods that search for structures in data. New York: IEEE Press of cp tree.

6 | P a g e

4.2. FUFP Tree:-

The frequent pattern tree (FP-tree) is an efficient data structure for association-rule mining

without generation of candidate itemsets. It was used to compress a database into a tree structure

which stored only large items. It, however, needed to process all transactions in a batch way. In

real-world applications, new transactions are usually incrementally inserted into databases. In the

past, we proposed a Fast Updated FP-tree (FUFP-tree) structure to efficiently handle new

transactions and to make the tree update process become easier. In this paper, we attempt to

modify the FUFP-tree construction based on the concept of pre-large itemsets. Pre-large itemsets

are defined by a lower support threshold and an upper support threshold. It does not need to

rescan the original database until a number of new transactions have been inserted. The proposed

approach can thus achieve a good execution time for tree construction especially when each time

a small number of transactions are inserted. Experimental results also show that the proposed

Pre-FUFP maintenance algorithm has a good performance for incrementally handling new

transactions.

Reference from: Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R.

(Eds.). (1996). Advances in knowledge discovery and data mining. AAAI/MIT Press of dynamic

fp tree.

4.3. RP Tree:

Most association rule mining techniques concentrate on finding frequent rules. However, rare

association rules are in some cases more interesting than frequent association rules since rare

rules represent unexpected or unknown associations. All current algorithms for rare

association rule mining use an Apriori level-wise approach which has computationally

expensive candidate generation and pruning steps. We propose RP-Tree, a method for mining

a subset of rare association rules using a tree structure, and an information gain component

that helps to identify the more interesting association rules. Empirical evaluation using a

range of real world datasets shows that RP-Tree itemset and rule generation is more time

efficient than modified versions of FP-Growth and ARIMA, and discovers 92-100% of all

the interesting rare association rules.

ADV:-Models use flows to define the tree topology and have different objective

functions.Computational results use instances from phylogenetic and telecommunications area.

DISADV:-Computational results use sets of instances having up to 15 terminal nodes.One of the

models outperforms the previous models proposed in the literature.

Reference from: Han, J., & Kamber, M. (2000). Data mining: Concepts and techniques: Morgan

Kaufmann.

7 | P a g e

4.4. FP Growth:

A new tree structure, called a FP tree, which is an extended prefix-tree structure for sorting

compressed and crucial information in 2000. Consequently, the FP-growth method is a FP-tree

based mining algorithm for mining frequent patterns. The Fp-growth approach is based on divide

and conquer strategy for producing the frequent itemsets. FP-growth is mainly used for mining

frequent itemsets without candidate generation to remove the drawbacks of the Apriori

algorithm.

Major steps in FP-growth are:

Step 1.It firstly compresses the database showing frequent itemset into FP-tree. FP-tree is built

using 2 passes over the dataset.

Step 2.It divides the FP-tree into a set of conditional database and mines each database

separately, thus extract frequent item sets from FP-tree directly.

ADV:-FP-Growth algorithm runs much faster than the Apriori, it is logical to parallelize the FP-
Growth algorithm to enjoy even faster speedup.

DISADV:- Recent work in parallelizing FP-Growth suffers from high communication cost, and
hence constrains the percentage of computation that can be parallelized.

Reference from: Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine learning,

neural and statistical classification: Ellis Horwood.

4.5. MSFP Algorithm:

Proposed mining association rules with non-uniform minimum support values in 1999. This

algorithm is an extension of Apriori algorithm which allowed users to choose different minsup to

different items according to its natural frequency. They also defined the MIS as the lowest

minimum supports among the items in the itemset. This is not always useful because it would

consider some items that are not worth to be considered because one of the items in this itemset,

its minsup was set too low. In some cases it makes sense that the minsup must be larger than the

maximum of theminimum supports of the items contained in an item set.

ADV:-Among the various data mining applications, mining association rules is an important one.

The strategies for mining frequent item sets, which is the essential part of discovering association

rules, have been widely studied over the last decade such as the Apriori, DHP, and FP growth.

DISADV:-In the traditional frequent item sets mining algorithms, a strict definition of support is

used to require every item in a frequent item set occurring in each supporting transaction.

Reference from: Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. New Jersey:

Prentice Hall.

8 | P a g e

5. Analysis of different type of Algorithm:

5.1. FP Growth Algorithm:

 The FP-Growth Algorithm, proposed by Han in, is an efficient and scalable method for

mining the complete set of frequent patterns by pattern fragment growth, using an

extended prefix-tree structure for storing compressed and crucial information about

frequent patterns named frequent-pattern tree (FP-tree).

Step1: if Tree contains a single prefix path then { // Mining single prefix-path FP-tree}

Step2: let P be the single prefix-path part of Tree;

Step3: let Q be the multipath part with the top branching node replaced by a null root;

Step4: for each combination (denoted as ß) of the nodes in the path P do

Step5: generate pattern ß ∪ a with support = minimum support of nodes in ß;

Step6: let freq pattern set(P) be the set of patterns so generated;

Step7: else let Q be Tree;

Step8: for each item ai in Q do { // Mining multipath FP-tree}

Step9: generate pattern ß = ai ∪ a with support = ai .support;

Step10: construct ß’s conditional pattern-base and then ß’s conditional FP-tree Tree ß;

Step11: if Tree ß ≠ Ø then

Step12: call FP-growth(Tree ß , ß);

Step13: let freq pattern set(Q) be the set of patterns so generated;

Step14: return(freq pattern set(P) ∪ freq pattern set(Q) ∪ (freq pattern set(P) × freq

pattern set.

Example:

TID Items bought (ordered) frequent items

100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}

200 {a, b, c, f, l, m, o} {f, c, a, b, m}

300 {b, f, h, j, o, w} {f, b}

400 {b, c, k, s, p} {c, b, p}

500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

min_support = 3

1. Scan DB once, find frequent 1-itemset (single item pattern)

2. Sort frequent items in frequency descending order, F-list

3. Scan DB again, construct FP-tree

9 | P a g e

Fig1: fp growth

5.2. Parallel FP Growth Algorithm:
 Proposed by Min Chen et.al , 2009. [“An efficient parallel FP-Growth algorithm”, M

Chen, X Gao, H.F. Li, IEEE Conference on Cyber-Enabled Distributed Computing and

Knowledge Discovery, 2009]

 It exploits the power of cluster computing.

 Multiple Computers/Processors works on the transaction database concurrently to

construct the FP tree.

 This algorithm executes faster that normal FP Growth algorithm.

 Amount of speed-up achieved largely depends on number of processors/computers

working concurrently.

10 | P a g e

Input: A transaction database Db and a minimum support threshold.

Output: It’s frequent pattern tree. FP Tree.

Method: The FP-Tree is constructed in the following steps.

Suppose there are n processor p1,p2…..pn;

Divide database Db into n part DB1….DBn with the same size.

Processor p,scan DBj once.And create total set of frequent items F and their supports.Short F in

support descending order as L.

for(j=l;j≤ n; j=j=2)

{

Processor p1,parallel scan DBj, construct FP-tree, do not create head table and node link;

}

While(n>1) do

for (j=1;j≤n;j=j+2)

{

Proccesssor p1,parallel call FP-merge(FP-treej,FP-tree,+1,int (j/2)+1);

n=n/2;

}

Create head table and same nodes link for FP-tree1;

Return FP-tree1;

End;

11 | P a g e

5.3. Compact Pattern Tree:

 It was first proposed by Syed Tanbeer et.al. [CP-tree: a tree structure for single-pass

frequent pattern mining, Syed Tanbeer et. Al. , Proceedings of the 12th Pacific-Asia

conference on Advances in knowledge discovery and data mining, 2008]

 Unlike FP Tree it requires only 1 database scan.

 CP-tree provides better performance than existing algorithms for interactive and

incremental mining

Input: T and l

Output: Tsortand lsort

Step1: Computer lsort from in frequency-descending order using merge sort technique

Step2: For each branch Bi in T

Step3: For each unprocessed path pi Bi

Step4: If Pi is a sorted path

Step5: Process_Branch(Pi)

Step6: Else sort_path(Pi)

Step7: Terminate when all the branches are sorted and output Tsort and lsort.

Step8: Process_Branch (P){

Step9: For each branching node nb in p form leafp node

Step10: For each sub-path form nb to leafx with k≠ p

Step11: If items ranks of all nodes between nb and leafx are greater than that of nb

Step12: P=sub-path from nb to leafx

Step13: if P is a sorted path

Step14: Process_Branch(P)

Step15: Elase P=path form the root to leafx

Step16: Sort_Path(P)

Step17: }

12 | P a g e

Step18: Sort_path(Q){

Step19: reduce the count of all nodes of Q by the value of leafQ count

Step20: using merge sort, sort Q in an array according to lsort order

Step21: delete all nodes having count zero from Q

Step22: Insert sorted Q into T at the location from where it was taken

Step23:}

Example:

Fig 2 cp tree pic

13 | P a g e

Fig 3: cp tree

Fig 4 cp tree

14 | P a g e

5.4. Ascending Frequency Order Prefix tree(AFOPT):

 This algorithm was first proposed by Liu et.al. [Ascending frequency ordered prefix-

tree: Efficient mining of frequent patterns, Liu et.al, Database Systems for Advanced

Applications, 2003.]

 This algorithm uses a simple while compact data structure—ascending frequency ordered

prefix tree(AFOPT) to organize the conditional databases.

 It uses arrays to store single branches to further save space.

 It then traverses the prefix-tree structure using a top-down strategy to mine pattern rules.

 This ascending frequency item ordering method achieves significant performance

improvement over other pattern mining algorithms.

Input:

root is the root of the prefix tree;

min_sup is the minimum support threshold;

Description:

Step 1: if there is only one branch in tree root then

Step 2: Output patterns and return;

Step 3: end if

Step 4: for all children c of root do

Step 5: traversal subtree rooted at c and find the set of frequent items Fꞌ. sort the items in Fꞌ in

ascending order of their frequencies;

Step 6: if |Fꞌ|> 1 then

Step 7: traversal subtree rooted at c and build anew prefix

Tree newroot which contains only the items in Fꞌ;

Step 8: AFOPT(newroot,min_sup);

Step 9:end if;

Step 10: for all children subroot of c do

15 | P a g e

Step 11: sibroot= the right sibling of c whose item equal to subroot item;

Step 12: Merge(sibroot, subroot);

Step 13: end for

Step 14: end for

Example:

Fig 5 AFOPT tree

16 | P a g e

6. SOFTWARE REQUIREMENT SPECIFICATION

The main software for studying DATA MINNING is WEKA.

Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine learning

software written in Java, developed at the University of Waikato, New Zealand. Weka is free

software available under the GNU General Public License. The Weka workbench contains a

collection of visualization tools and algorithms for data analysis and predictive modeling,

together with graphical user interfaces for easy access to this functionality . Weka is a collection

of machine learning algorithms for solving real-world data mining problems. It is written in Java

and runs on almost any platform. The algorithms can either be applied directly to a dataset or

called from your own Java code. The original non-Java version of Weka was a TCL/TK frontend

to (mostly third-party) modeling algorithms implemented in other programming languages, plus

data preprocessing utilities in C, and a Makefile-based system for running machine learning

experiments. This original version was primarily designed as a tool for analyzing data from

agricultural domains, but the more recent fully Java-based version (Weka 3), for which

development started in 1997, is now used in many different application areas, in particular for

educational purposes and research.

Advantages of Weka include:

I. Free availability under the GNU General Public License

II. Portability, since it is fully implemented in the Java programming language and thus

runs on almost any modern computing platform

III. A comprehensive collection of data preprocessing and modeling techniques

IV. Ease of use due to its graphical user interfaces Weka supports several standard data

mining tasks, more specifically, data preprocessing, clustering, classification,

regression, visualization, and feature selection

17 | P a g e

7. Coding And Screenshot

I. Open the .arff file which is present in the system, by choosing it from the OPEN

FILE option. All the attribute and the instance that are present in the chosen .arff

file while be shown as follow.

II. In the association tab, we have to associate the FP Growth to generate the rule,

but it is disable , as in the figure.

18 | P a g e

III. To enable the disable FP growth associator, we have to apply filter to the the .arff

file from the preprocess. We have to choose from the unsupervised attribute

filter, NOMINAL TO BINARY to convert all nominal value to binary, as the

data only contain the nominal value and select the CLASS as NO CLASS and

apply it. The following figure show the output of the step.

19 | P a g e

IV. Now we also have to apply NUMERIC TO BINARY filter form the unsupervised

attribute filter to convert all the numeric value to binary select the CLASS as NO

CLASS and apply it. The following figure show the output of the step.

V. Now in the associate tab, the FP Growth associator is enable and ready to choose

to generate the FP Growth rule.

20 | P a g e

VI. Now choosing the FP Growth associator we can also change its parameter by just

clicking on the FP Growth chosen option. We change the num of rule to find to

100 and set the minimum support to 0.8 and other parameter accordingly and save

it.

VII. After setting all the parameter we just need to click on the start button to generate

the rules. Accordingly all FP rule with the given parameter are generated.

21 | P a g e

22 | P a g e

8. Result And Testing

Now choosing select attribute, go to the search method and choose the Best First- D 1 –N 5

method, then go to the attribute selection mode and choose the cross-validation. Set the Folds

and Seed. Choose the “(Nom) MIN _ binarized=1_binarized” and click the “Start” button. And

we are choosing only those item set which have 100% s

23 | P a g e

9. FUTURE ASPECT

Abundant literature is published in research into frequent pattern mining However, based on our

view; there are still several critical research problems that need to be solved before frequent

pattern mining can become a cornerstone approach in data mining applications. First, the most

focused and extensively studied topic in frequent pattern mining is perhaps scalable mining

methods. When we are working with data streams still it is a research challenge to derive a

compact but high quality set of patterns that are most useful in applications. The set of frequent

patterns derived by most of the current pattern mining methods including ours give approximate

patterns as stream is flowing continuously and some data is lost in the process of analyzing the

stream. There are proposals on reduction of such a huge data set, including closed patterns,

maximal patterns, approximate patterns, condensed pattern bases, representative patterns,

clustered patterns, and discriminative frequent patterns, but still it is research issue to mine

pattern sets in both compactness and representative quality for a particular application. To make

frequent pattern mining an essential task in data mining, much research is needed to further

develop pattern-based mining methods. For example, classification is an essential task in data

mining. Construction of better classification models using frequent patterns than most other

classification methods is again a research issue.

On one side, it is important to go to the core part of pattern mining algorithms, and analyze the

theoretical properties of different solutions. Much work is needed to explore new applications of

frequent pattern mining. For example, bioinformatics has raised a lot of challenging problems,

and we believe frequent pattern mining may contribute a good deal to it with further research

efforts.

24 | P a g e

10. Conclusion

In our project we have analysed various pattern mining algorithms. FP growth is the most

popular algorithm of the lot. Parallel FP Growth is the algorithm that runs on parallel processors

,which has superior run time than FP growth. Compact Pattern tree has added advantage over FP

Tree because it scans the DB only once. FP Tree is an efficient algorithm to find frequent

patterns in transactional database. FP-Growth is the first successful tree base algorithm for

mining the frequent item sets by using its various techniques mentioned its performance can be

increased as per the requirements. As in the case of large database its structure fails to fit into

main memory hence for this purpose new techniques have been came into existence for reducing

data-set and generating tree-structure that may consist of the variations of the classic FP-Tree

and result in higher performance.

We have tried to implement the basic FP Growth algorithm for sufficient research work and also

we have utilized WEKA for referring the process of association rule mining. In future we plan to

implement other pattern mining algorithms with Weka.

11. REFERENCES

1. Bezdek, J. C., & Pal, S. K. (1992). Fuzzy models for pattern recognition: Methods that

search for structures in data. New York: IEEE Press

2. Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R.

(Eds.). (1996). Advances in knowledge discovery and data mining. AAAI/MIT Press.

3. Han, J., & Kamber, M. (2000). Data mining: Concepts and techniques: Morgan

Kaufmann.

4. Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning:

Data mining, inference, and prediction: New York: Springer.

5. Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. New Jersey: Prentice

Hall.

6. Jensen, F. V. (1996). An introduction

to bayesian networks. London: University College London Press.

7. Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to

cluster analysis. New York: John Wiley.

8. Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine learning, neural and

statistical classification: Ellis Horwood.

25 | P a g e

12. LIST OF FIGURES

Serial No Image no Image name Page no

1 Fig 1 FP Growth 8

2 Fig 2 CP Tree 11

3 Fig 3 CP Tree 12

4 Fig 4 CP Tree 12

5 Fig 5 AFOPT Tree 14

