
OPTIMIZATION OF TOUR BASED PROBLEM
USING GENETIC ALGORITHM

REPORT OF PROJECT SUBMITTED FOR PARTIAL FULFILLMENT OF THE
REQUIREMENT FOR THE DEGREE OF

BACHELOR OF TECHNOLOGY

In
INFORMATION TECHNOLOGY

By

 UNDER THE SUPERVISION OF

 Dr. Dipankar Majumdar

 Assistant Professor, Department of Information Technology
 RCC Institute of Information Technology
 AT

RCC INSTITUTE OF INFORMATION TECHNOLOGY [Affiliated to
West Bengal University of Technology] CANAL SOUTH ROAD,

BELIAGHATA, KOLKATA – 700 015

S.NO TEAM MEMBERS ROLL NO Registration No.

1. Prakash Dubey IT/2014/044 141170110144

2. Jatin Prakash IT/2014/038 141170110133

3. Umakant Piyush IT/2014/026 141170110177

RCC INSTITUTE OF INFORMATION TECHNOLOGY

 KOLKATA – 7OOO15, INDIA

CERTIFICATE

The report of the Project titled APPLICATION OF GENETIC ALGORITHM IN OPTIMIZATION
OF TSP submitted by (Prakash Dubey Roll No.: IT/2014/044 of B. Tech. (IT) 8 th Semester
of 2018, Jatin Prakash Roll No.: IT/2014/038 of B. Tech. (IT) 8 th Semester of 2018,
Umakant Piyush Roll No.: IT/2014/026 of B. Tech. (IT) 8 th Semester of 2018) has been
prepared under our supervision for the partial fulfillment of the requirements for B Tech
(IT) degree in West Bengal University of Technology.

The report is hereby forwarded.

 Counter signed by

 Dr. Abhijit Das
DR. Dipankar Majumdar HOD,Dept. of Information Technology
Assistant Professor RCC Institute of Information Technology
Dept. of Information Technology, KOLKATA-700015
RCC Institute of Information Technology
 KOLKATA-700015

ACKNOWLEDGEMENT

We would like to express our sincere gratitude to Dr. Dipankar Majumdar of

Department of INFORMATION TECHNOLOGY, RCCIIT and for extending their valuable

times for me to take up this problem as a Project.We are extremely thankful for the

keen interest he look in advising us for the reference materials provided for the moral

support extended to us.

 Last but not the least we would like to express our gratitude to all the teachers of our

department who helped us in their own way whenever needed.

Date: 13th June, 2018 Prakash Dubey
 Reg. No.: 141170110144 of 2014-15
 Roll No.: IT/2014/044
 Jatin Prakash
 Reg. No.:141170110133 of 2014-15
 Roll No.:IT/2014/038
 Umakant Piyush
 Reg. No.:141170110177 of 2014-15
 Roll No.:IT/2014/026
 B. Tech (IT) – 8 th Semester, 2016, RCCIIT

 RCC INSTITUTE OF INFORMATION TECHNOLOGY

KOLKATA – 7OOO15, INDIA

CERTIFICATE of ACCEPTANCE

The report of the Project titled APPLICATION OF GENETIC ALGORITHM IN SOFTWARE
TESTING submitted by(Prakash Dubey Roll No.: IT/2014/044 of B. Tech. (IT) 8 th
Semester of 2018,Jatin Prakash Roll No.: IT/2014/038 of B. Tech. (IT) 8 th Semester of
2018,Umakant Piyush Roll No.: IT/2014/026 of B. Tech. (IT) 8 th Semester of 2018),
is hereby recommended to be accepted for the partial fulfillment of the requirements
for B Tech (IT) degree in West Bengal. University of Technology

Name of the Examiner Signature with Date

1. ……………………………………. …………………………….

2. …………………………………….. ……………………………..

3. ……………………………………… ………………………………

4. ………………………………………. ………………………………

TABLE OF CONTENTS

Topics Page No.

1. Introduction……………………………………………………………………………………..

2. Problem Analysis………………………………………………………………………….…..

3. Review of Literature………………………………………………………………………….

4. Formulation / Algorithm…………………………………………………………………….

5. Problem Discussion…………………………………………………………………………..

6. Sample Output………………………………………………………………………………….

7. Conclusion / Future Scope of Work…………………………………………………..

 8. Reference………………………………………………………………………………………….

9. Appendix (Program Code)………………………………………………………………….

Introduction

Optimization:The action of making the best or most effective use of a situation or
resource.

In Optimization for tour based problem we have to find the shortest route from
available routes.We have one famous problem on tour based that is Traveling Salesman
Problem.

The Travelling Salesman problem (TSP) The Travelling Salesman Problem (TSP) is a
classic combinatorial optimization problem, which is simple to state but very difficult t o
solve. This problem is known to be NP-hard, and cannot be solved exactly in polynomial
time. Many exact and heuristic algorithms have been developed in the field of
operations research (OR) to solve this problem. The problem is to find the shortest
possible tour through a set of n vertices so that each vertex is visited exactly once. The
traveling salesman first gained fame in a book written by German salesman BF Voigt in
1832 on how to be a successful traveling salesman. He mentions the TSP, although not
by that name, by suggesting that to cover as many locations as possible without visiting
any location twice is the most important aspect of the scheduling of a tour. The origins
of the TSP in mathematics are not really known -all we know for certain is that it
happened around 1931. On the basis of the structure of the cost matrix, the TSPs are
classified into two groups – symmetric and asymmetric. The TSP is symmetric if cij = cji,
for all i, j and asymmetric otherwise. For an n-city asymmetric TSP, there are (n −)!1
possible solutions, one or more of which gives the minimum cost. For an n-city
symmetric TSP, there are (n − 1)!/2 possible solutions along with their reverse cyclic
permutations having the same total cost. In either case the number of solutions
becomes extremely large for even moderately large n so that an exhaustive search is
impracticable.

The problem was first formulated in 1930 and is one of the most intensively studied

problems in optimization. It is used as a benchmark for many optimization methods.

Even though the problem is computationally difficult, a large number of heuristics and

exact algorithms are known, so that some instances with tens of thousands of cities can

be solved completely and even problems with millions of cities can be approximated

within a small fraction of 1%.The TSP has several applications even in its purest

formulation, such as planning, logistics, and the manufacture of microchips. Slightly

modified, it appears as a sub-problem in many areas, such as DNA sequencing. In these

applications, the concept city represents, for example, customers, soldering points, or

DNA fragments, and the concept distance represents travelling times or cost, or a

similarity measure between DNA fragments. The TSP also appears in astronomy, as

astronomers observing many sources will want to minimize the time spent moving the

telescope between the sources. In many applications, additional constraints such as

limited resources or time windows may be imposed.

 Problem Definition

The travelling salesman problem consist of a salesman and a set of cities,the salesman
has to visit each one of the cities starting from a certain one and returning to the same
city.The challenging of the problem is that the traveling salesman wants to minimize
the total length of the city.

Traveling salesman problem-adjacency representation and path representation.
We consider the path representation for a tour ,which simply lists the level of nodes.

We can solve traveling salesman problem using Genetic algorithm
To ensure the genetic algorithm does indeed meet this requirement special types of mutation

and crossover methods are needed.

Firstly, the mutation method should only be capable of shuffling the route, it shouldn't ever add

or remove a location from the route, otherwise it would risk creating an invalid solution. One

type of mutation method we could use is swap mutation.

With swap mutation two location in the route are selected at random then their positions are

simply swapped. For example, if we apply swap mutation to the following list, [1,2,3,4,5] we

might end up with, [1,2,5,4,3]. Here, positions 3 and 5 were switched creating a new list with

exactly the same values, just a different order. Because swap mutation is only swapping pre-

existing values, it will never create a list which has missing or duplicate values when compared

to the original, and that's exactly what we want for the traveling salesman problem.

Now we've dealt with the mutation method we need to pick a crossover method which can

enforce the same constraint.

One crossover method that's able to produce a valid route is ordered crossover. In this

crossover method we select a subset from the first parent, and then add that subset to the

offspring. Any missing values are then adding to the offspring from the second parent in order

that they are found.

To make this explanation a little clearer consider the following example:

Parents

Offspring

Here a subset of the route is taken from the first parent (6,7,8) and added to the offspring's
route. Next, the missing route locations are adding in order from the second parent. The first
location in the second parent's route is 9 which isn't in the offspring's route so it's added in the
first available position. The next position in the parents route is 8 which is in the offspring's
route so it's skipped. This process continues until the offspring has no remaining empty values.
If implemented correctly the end result should be a route which contains all of the positions it's
parents did with no positions missing or duplicated.

Literature Study

Despite an intensive study by mathematicians, computer scientists, operations researchers, and others, it
remains an open question whether or not an efficient general solution exists for the travelling salesman problem
. Hence, it is considered as a benchmark problem, and various methods are being applied to it, so as to get
better solutions than those already known. Solutions to the travelling salesman problem can be approached
using combinatorial optimization techniques. There are two types of solution search methods: First is to use
exact algorithms, which can give optimal solution but takes a huge amount of time. Second is to use
approximate algorithms, which never guarantee an optimal solution but gives near optimal solution in a
reasonable amount of computational time. Few of these methods are described below: The most direct solution
would be to use the brute force approach and try all permutations and check which solution is optimal. The
computational complexity of this approach is of the order O(N!) for ‘N’ cities. Because of the ever increasing
number of the possible solutions and the combinatorial nature of the travelling salesman problem, it is
impractical to use this approach to solve the problems even with high performance computers.

George Dantzig, Ray Fulkerson and Selmer Johnson illustrated the power of cutting - plane method for solving
the travelling salesman problem in 1954. This method was introduced when no algorithms were available to
solve integer linear programs. They solved an instance with 49 cities, an impressive size at that time. Problem-
specific methods are needed to find the cuts used by this method. More discussion of cutting-plane algorithms .
In 1960s, the branch-andbound method was proposed by A. H. Land and A. G. Doig for discrete programming. It
controls the searching process through an effective restrictive boundary so that it can search for the optimal
solution branch from the space state tree instantly. The key point of this algorithm is the choice of the restrictive
boundary. Different restrictive boundaries may form different branch-and-bound algorithms. In the late 1970s
and 1980, Grtschel, Padberg, Rinaldi and others managed to apply the algorithm to travelling salesman problem
and exactly solve instances with up to 2392 cities, using cutting planes and branch-and-bound method.
However, the branch-and-bound algorithm alone is not feasible enough for solving the large-scale problem.

Michael Held and Richard Karp developed the Held-Karp bound which provides a near-optimal lower bound on
the cost of solutions to the travelling salesman problem. For a travelling salesman problem with ‘N’ cities, their
method guarantees that it is proportional to N22 N. For any large value of ‘N’ the Held-Karp guarantee is much
less than (N-1)!. Held-Karp bound is actually a solution to the linear programming relaxation of the integer
formulation of the travelling salesman problem. A Held-Karp lower bound averages about 0.8% below the
optimal tour length. More details about the Held-Karp bound technique can be found in, and a good survey on
this technique is given by Gerhard Woeginger.

Algorithm

A genetic algorithm (GA) is great for finding solutions to complex search

problems. They're often used in fields such as engineering to create

incredibly high quality products thanks to their ability to search a through a

huge combination of parameters to find the best match. For example, they can

search through different combinations of materials and designs to find the

perfect combination of both which could result in a stronger, lighter and

overall, better final product. They can also be used to design computer

algorithms, to schedule tasks, and to solve other optimization problems.

Genetic algorithms are based on the process of evolution by natural selection

which has been observed in nature. They essentially replicate the way in

which life uses evolution to find solutions to real world problems. Surprisingly

although genetic algorithms can be used to find solutions to incredibly

complicated problems, they are themselves pretty simple to use and

understand.

How they work
As we now know they're based on the process of natural selection, this means they

take the fundamental properties of natural selection and apply them to whatever

problem it is we're trying to solve.

The basic process for a genetic algorithm is:

1. Initialization - Create an initial population. This population is usually randomly
generated and can be any desired size, from only a few individuals to thousands.

2. Evaluation - Each member of the population is then evaluated and we
calculate a 'fitness' for that individual. The fitness value is calculated by how well
it fits with our desired requirements. These requirements could be simple, 'faster
algorithms are better', or more complex, 'stronger materials are better but they
shouldn't be too heavy'.

3. Selection - We want to be constantly improving our populations overall fitness.
Selection helps us to do this by discarding the bad designs and only keeping the
best individuals in the population. There are a few different selection methods
but the basic idea is the same, make it more likely that fitter individuals will be
selected for our next generation.

4. Crossover - During crossover we create new individuals by combining aspects
of our selected individuals. We can think of this as mimicking how sex works in

nature. The hope is that by combining certain traits from two or more individuals
we will create an even 'fitter' offspring which will inherit the best traits from each
of it's parents.

5. Mutation - We need to add a little bit randomness into our populations'
genetics otherwise every combination of solutions we can create would be in our
initial population. Mutation typically works by making very small changes at
random to an individuals genome.

6. And repeat! - Now we have our next generation we can start again from step
two until we reach a termination condition.

Termination
There are a few reasons why you would want to terminate your genetic

algorithm from continuing it's search for a solution. The most likely reason is

that your algorithm has found a solution which is good enough and meets a

predefined minimum criteria. Offer reasons for terminating could be

constraints such as time or money.

Problem Discussion

Genetic Algorithm is an optimization technique. It is an evolutionary algorithm which
generate solution to problem inspired by natural evolution, In this, randomly population
are selected and that inherit to new population called offstring. Fitness of population is
evaluated to generate offstring. After evaluation of fitness value ,perform mutation and
crossover to generate offstring. This process perform in intration, until optimal solution
is not found. It Consists Three Operation 2.1.1.Selection Selection in which analyze
chromosome or population by fitness function to generate offstring whether they are
survive or not and reproduce in nature. There are various selection methods- 1.Random
Selection 2.Roulette Wheel Selection 3.Tournament Selection 2.1.2.Crossover It is
technique to generate new chromosome, define pair of chromosome and swapping in
sequence of bits and generate new population. For instance[3], Parent 1: aAbBcC Parent
2: 123456 Child: aAb45 (one possibility out of many) 2.1.3. Mutation Mutaion is
performed in bits and mutate every bit of chromosome every bit of chromosome to
generate offstring. For instance, Parent 1: aAbBcC Parent 2: 123456 Child: aAbZ56
(changing 4 to Z).

 Implementation
Steps Of Algorithms
1.Randomly create the initial population of individual string of the given TSP problem and create a matrix
representation of the cost of the path between two cities.
2.Assign the fitness to each chromosome in the population using fitness criteria measure. F(x) = 1/x where, x
represents the total cost of the string. The selection criteria depends upon the value of string if it is close to
some threshold value.
3. Create new offspring population from two existing chromosomes in the parent population by applying
crossover operator.
4.Mutate the resultant off-springs if required. NOTE: After the crossover off spring population has the fitness
value higher than the parents.
5.Repeat step 3 and 4 until we get an optimal solution to the problem.

for any optimization problem, one has to think a way for encoding solutions as feasible chromosomes so that

the crossovers of feasible chromosomes result in feasible chromosomes. The techniques for encoding solutions

vary by problem and, involve a certain amount of art. For the TSP, solution is typically represented by

chromosome of length as the number of nodes in the problem. Each gene of a chromosome takes a label of

node such that no node can appear twice in the same chromosome. There are mainly two representation

methods for representing tour of the TSP – adjacency representation and path representation. W e consider the

Create initial

population

Selection by

fitness criteria

Select parent (having

fitness close to

threshold

Criteria

satisfied
stop

Select any two strings

from population

Perform cross-over

operation on each parent

Make off-spring population from

parent population

yes

no

path representation for a tour, which simply lists the label of nodes. For example, let {1, 2, 3, 4, 5} be the labels

of nodes in a 5 node instance, then a tour {1 3 4 2 5 1} may be represented as (1, 3, 4, 2, 5) Fitness function The

GAs are used for maximization problem. For the maximization problem the fitness function is same as the

objective function. But, for minimization problem, one way of defining a „fitness function‟ F (x) = 1/ f (x)

where f (x) is the objective function. Since, TSP is a minimization problem; we consider this fitness function,

where f(x) calculates cost (or value) of the tour represented by a chromosome. Selection Process: In selection

process, chromosomes are copied into next generation with a probability associated with their fitness value. By

assigning to next generation a higher portion of the highly fit chromosomes, reproduction mimics the Darwinian

survival-of-the-fittest in the natural world. In this paper we are using Elitism method for selection. Elitism is

name of method, which first copies the best chromosome (or a few best chromosomes) to new population. The

rest is done in classical way. Elitism can very rapidly increase performance of GA, because it prevents losing the

best found solution

Output:

Conclusion/Future Scope Of Work

 Genetic algorithms are often used for optimization problems in which the
evolution of a population is a search for a satisfactory solution given a set of constraints.
We have reported preliminary results from an experiment comparing random test data
generation with a new approach using genetic search. In this paper, we have
demonstrated that it is possible to apply Genetic Algorithm techniques for finding the
optimal paths for Travelling salesman problem. The Genetic Algorithms also
outperforms the exhaustive search and local search techniques.

 Genetic algorithm appear to find good solutions for the Travelling Salesman
Problem,however it depends very much on the way the problem is encoded and which
crossover and mutation methods are used .We have proposed a new crossover operator
named for a genetic algorithm for the Traveling Salesman Problem (TSP). . Among all the
operators, experimental results show that our proposed crossover operator (SCX) is
better in terms of quality of solutions and cost as well as solution times. That is why, we
used a local search technique to improve the solution quality. Also, we set here highest
probability of crossover to show the exact nature of crossover operator. Mutation with
lowest probability is applied wherever required only. We presented a comparative study
among Greedy approach, Dynamic programming and Genetic Algorithm for solving
TSP.It is very difficult to say that what moderate sized instance is unsolvable exactly by
our crossover operator. So an incorporation of good local search technique to the
algorithm may solve exactly the other instances, which is under our investigation and is
categorized under future work .

 Appendix(program code)
To start, let's create a class that can encode the cities.

City.java
/*

* City.java

* Models a city

*/

package tsp;

public class City {

 int x;

 int y;

 // Constructs a randomly placed city

 public City(){

 this.x = (int)(Math.random()*200);

 this.y = (int)(Math.random()*200);

 }

 // Constructs a city at chosen x, y location

 public City(int x, int y){

 this.x = x;

 this.y = y;

 }

 // Gets city's x coordinate

 public int getX(){

 return this.x;

 }

 // Gets city's y coordinate

 public int getY(){

 return this.y;

 }

 // Gets the distance to given city

 public double distanceTo(City city){

 int xDistance = Math.abs(getX() - city.getX());

 int yDistance = Math.abs(getY() - city.getY());

 double distance = Math.sqrt((xDistance*xDistance) + (yDistance*yDistance));

 return distance;

 }

 @Override

 public String toString(){

 return getX()+", "+getY();

 }

}

Now we can create a class that holds all of our destination cities for our tour

TourManager.java
/*

* TourManager.java

* Holds the cities of a tour

*/

package tsp;

import java.util.ArrayList;

public class TourManager {

 // Holds our cities

 private static ArrayList destinationCities = new ArrayList<City>();

 // Adds a destination city

 public static void addCity(City city) {

 destinationCities.add(city);

 }

 // Get a city

 public static City getCity(int index){

 return (City)destinationCities.get(index);

 }

 // Get the number of destination cities

 public static int numberOfCities(){

 return destinationCities.size();

 }

}

Next we need a class that can encode our routes, these are generally referred to as
tours so we'll stick to the convention.

Tour.java
/*

* Tour.java

* Stores a candidate tour

*/

package tsp;

import java.util.ArrayList;

import java.util.Collections;

public class Tour{

 // Holds our tour of cities

 private ArrayList tour = new ArrayList<City>();

 // Cache

 private double fitness = 0;

 private int distance = 0;

 // Constructs a blank tour

 public Tour(){

 for (int i = 0; i < TourManager.numberOfCities(); i++) {

 tour.add(null);

 }

 }

 public Tour(ArrayList tour){

 this.tour = tour;

 }

 // Creates a random individual

 public void generateIndividual() {

 // Loop through all our destination cities and add them to our tour

 for (int cityIndex = 0; cityIndex < TourManager.numberOfCities(); cityIndex++) {

 setCity(cityIndex, TourManager.getCity(cityIndex));

 }

 // Randomly reorder the tour

 Collections.shuffle(tour);

 }

 // Gets a city from the tour

 public City getCity(int tourPosition) {

 return (City)tour.get(tourPosition);

 }

 // Sets a city in a certain position within a tour

 public void setCity(int tourPosition, City city) {

 tour.set(tourPosition, city);

 // If the tours been altered we need to reset the fitness and distance

 fitness = 0;

 distance = 0;

 }

 // Gets the tours fitness

 public double getFitness() {

 if (fitness == 0) {

 fitness = 1/(double)getDistance();

 }

 return fitness;

 }

 // Gets the total distance of the tour

 public int getDistance(){

 if (distance == 0) {

 int tourDistance = 0;

 // Loop through our tour's cities

 for (int cityIndex=0; cityIndex < tourSize(); cityIndex++) {

 // Get city we're travelling from

 City fromCity = getCity(cityIndex);

 // City we're travelling to

 City destinationCity;

 // Check we're not on our tour's last city, if we are set our

 // tour's final destination city to our starting city

 if(cityIndex+1 < tourSize()){

 destinationCity = getCity(cityIndex+1);

 }

 else{

 destinationCity = getCity(0);

 }

 // Get the distance between the two cities

 tourDistance += fromCity.distanceTo(destinationCity);

 }

 distance = tourDistance;

 }

 return distance;

 }

 // Get number of cities on our tour

 public int tourSize() {

 return tour.size();

 }

 // Check if the tour contains a city

 public boolean containsCity(City city){

 return tour.contains(city);

 }

 @Override

 public String toString() {

 String geneString = "|";

 for (int i = 0; i < tourSize(); i++) {

 geneString += getCity(i)+"|";

 }

 return geneString;

 }

}

We also need to create a class that can hold a population of candidate tours

Population.java
/*

* Population.java

* Manages a population of candidate tours

*/

package tsp;

public class Population {

 // Holds population of tours

 Tour[] tours;

 // Construct a population

 public Population(int populationSize, boolean initialise) {

 tours = new Tour[populationSize];

 // If we need to initialise a population of tours do so

 if (initialise) {

 // Loop and create individuals

 for (int i = 0; i < populationSize(); i++) {

 Tour newTour = new Tour();

 newTour.generateIndividual();

 saveTour(i, newTour);

 }

 }

 }

 // Saves a tour

 public void saveTour(int index, Tour tour) {

 tours[index] = tour;

 }

 // Gets a tour from population

 public Tour getTour(int index) {

 return tours[index];

 }

 // Gets the best tour in the population

 public Tour getFittest() {

 Tour fittest = tours[0];

 // Loop through individuals to find fittest

 for (int i = 1; i < populationSize(); i++) {

 if (fittest.getFitness() <= getTour(i).getFitness()) {

 fittest = getTour(i);

 }

 }

 return fittest;

 }

 // Gets population size

 public int populationSize() {

 return tours.length;

 }

}

Next, the let's create a GA class which will handle the working of the genetic
algorithm and evolve our population of solutions.

GA.java
/*

* GA.java

* Manages algorithms for evolving population

*/

package tsp;

public class GA {

 /* GA parameters */

 private static final double mutationRate = 0.015;

 private static final int tournamentSize = 5;

 private static final boolean elitism = true;

 // Evolves a population over one generation

 public static Population evolvePopulation(Population pop) {

 Population newPopulation = new Population(pop.populationSize(), false);

 // Keep our best individual if elitism is enabled

 int elitismOffset = 0;

 if (elitism) {

 newPopulation.saveTour(0, pop.getFittest());

 elitismOffset = 1;

 }

 // Crossover population

 // Loop over the new population's size and create individuals from

 // Current population

 for (int i = elitismOffset; i < newPopulation.populationSize(); i++) {

 // Select parents

 Tour parent1 = tournamentSelection(pop);

 Tour parent2 = tournamentSelection(pop);

 // Crossover parents

 Tour child = crossover(parent1, parent2);

 // Add child to new population

 newPopulation.saveTour(i, child);

 }

 // Mutate the new population a bit to add some new genetic material

 for (int i = elitismOffset; i < newPopulation.populationSize(); i++) {

 mutate(newPopulation.getTour(i));

 }

 return newPopulation;

 }

 // Applies crossover to a set of parents and creates offspring

 public static Tour crossover(Tour parent1, Tour parent2) {

 // Create new child tour

 Tour child = new Tour();

 // Get start and end sub tour positions for parent1's tour

 int startPos = (int) (Math.random() * parent1.tourSize());

 int endPos = (int) (Math.random() * parent1.tourSize());

 // Loop and add the sub tour from parent1 to our child

 for (int i = 0; i < child.tourSize(); i++) {

 // If our start position is less than the end position

 if (startPos < endPos && i > startPos && i < endPos) {

 child.setCity(i, parent1.getCity(i));

 } // If our start position is larger

 else if (startPos > endPos) {

 if (!(i < startPos && i > endPos)) {

 child.setCity(i, parent1.getCity(i));

 }

 }

 }

 // Loop through parent2's city tour

 for (int i = 0; i < parent2.tourSize(); i++) {

 // If child doesn't have the city add it

 if (!child.containsCity(parent2.getCity(i))) {

 // Loop to find a spare position in the child's tour

 for (int ii = 0; ii < child.tourSize(); ii++) {

 // Spare position found, add city

 if (child.getCity(ii) == null) {

 child.setCity(ii, parent2.getCity(i));

 break;

 }

 }

 }

 }

 return child;

 }

 // Mutate a tour using swap mutation

 private static void mutate(Tour tour) {

 // Loop through tour cities

 for(int tourPos1=0; tourPos1 < tour.tourSize(); tourPos1++){

 // Apply mutation rate

 if(Math.random() < mutationRate){

 // Get a second random position in the tour

 int tourPos2 = (int) (tour.tourSize() * Math.random());

 // Get the cities at target position in tour

 City city1 = tour.getCity(tourPos1);

 City city2 = tour.getCity(tourPos2);

 // Swap them around

 tour.setCity(tourPos2, city1);

 tour.setCity(tourPos1, city2);

 }

 }

 }

 // Selects candidate tour for crossover

 private static Tour tournamentSelection(Population pop) {

 // Create a tournament population

 Population tournament = new Population(tournamentSize, false);

 // For each place in the tournament get a random candidate tour and

 // add it

 for (int i = 0; i < tournamentSize; i++) {

 int randomId = (int) (Math.random() * pop.populationSize());

 tournament.saveTour(i, pop.getTour(randomId));

 }

 // Get the fittest tour

 Tour fittest = tournament.getFittest();

 return fittest;

 }

}

Now we can create our main method, add our cities and evolve a route for our
travelling salesman problem.

TSP_GA.java
/*

* TSP_GA.java

* Create a tour and evolve a solution

*/

package tsp;

public class TSP_GA {

 public static void main(String[] args) {

 // Create and add our cities

 City city = new City(60, 200);

 TourManager.addCity(city);

 City city2 = new City(180, 200);

 TourManager.addCity(city2);

 City city3 = new City(80, 180);

 TourManager.addCity(city3);

 City city4 = new City(140, 180);

 TourManager.addCity(city4);

 City city5 = new City(20, 160);

 TourManager.addCity(city5);

 City city6 = new City(100, 160);

 TourManager.addCity(city6);

 City city7 = new City(200, 160);

 TourManager.addCity(city7);

 City city8 = new City(140, 140);

 TourManager.addCity(city8);

 City city9 = new City(40, 120);

 TourManager.addCity(city9);

 City city10 = new City(100, 120);

 TourManager.addCity(city10);

 City city11 = new City(180, 100);

 TourManager.addCity(city11);

 City city12 = new City(60, 80);

 TourManager.addCity(city12);

 City city13 = new City(120, 80);

 TourManager.addCity(city13);

 City city14 = new City(180, 60);

 TourManager.addCity(city14);

 City city15 = new City(20, 40);

 TourManager.addCity(city15);

 City city16 = new City(100, 40);

 TourManager.addCity(city16);

 City city17 = new City(200, 40);

 TourManager.addCity(city17);

 City city18 = new City(20, 20);

 TourManager.addCity(city18);

 City city19 = new City(60, 20);

 TourManager.addCity(city19);

 City city20 = new City(160, 20);

 TourManager.addCity(city20);

 // Initialize population

 Population pop = new Population(50, true);

 System.out.println("Initial distance: " + pop.getFittest().getDistance());

 // Evolve population for 100 generations

 pop = GA.evolvePopulation(pop);

 for (int i = 0; i < 100; i++) {

 pop = GA.evolvePopulation(pop);

 }

 // Print final results

 System.out.println("Finished");

 System.out.println("Final distance: " + pop.getFittest().getDistance());

 System.out.println("Solution:");

 System.out.println(pop.getFittest());

 }

}

Reference
1. Melanie Mitchell,Santa Fe Institute,1399 Hyde Park Road,Santa Fe, NM 87501

email: mm@santafe.edu

2. Babamir, F.S., Babamir, S.M.: A GA based-method to Generate Test Data of
Program Paths. In: 15th National Computer Conference CSICC, Tehran, IRAN
(2010)

3. Babamir, S.M., Babamir, F.S.: A Genetic-based Algorithm to Optimum Generation
of Data for Program Paths Testing. In: 14th National Computer Conference CSICC,
Tehran, IRAN (2009)

4. Goldberg, D.E.: Genetic Algorithm in a Search Optimization and Machine Learning.
Addison Wesley, Reading (1989)

mailto:mm@santafe.edu

