

Page | 1

Project Title

Report submitted for the partial fulfillment of the requirements for the degree of

Bachelor of Technology in

Information Technology

Submitted by

 AFRIN KHATUN -- (11700214005)

 SHIKHA SINGH – (11700214063)

 Under the Guidance of

 Dr. Dipankar Majumdar

 (Associate Professor, Of Information Technology)

 RCC Institute of Information Technology

 Canal South Road, Beliaghata, Kolkata – 700 015

 [Affiliated to West Bengal University of Technology]

Page | 2

 Acknowledgement

We would like to express our sincere gratitude to Dr. Dipankar Majumdar of the department of Information

Technology, whose role as project guide was invaluable for the project. We are extremely thankful for the

keen interest he / she took in advising us, for the books and reference materials provided for the moral

support extended to us.

Last but not the least we convey our gratitude to all the teachers for providing us the technical skill that will always

remain as our asset and to all non-teaching staff for the gracious hospitality they offered us.

Place: RCCIIT, Kolkata

Date:15.05.2018

 ………………………………

 AFRIN KHATUN

 ………………………………

 SHIKHA SINGH

Page | 3

Department of Information Technology

RCCIIT, Beliaghata,

Kolkata – 700 015,

West Bengal, India

Approval

This is to certify that the project report entitled “INTELLIGENT SCHEDULING SYSTEM USING

GENETIC ALGORITHM” prepared under my supervision by AFRIN KHATUN (Roll no. -11700214005)

and SHIKHA SINGH (Roll no - 11700214063) be accepted in partial fulfillment for the degree of Bachelor

of Technology in Information Technology.

It is to be understood that by this approval, the undersigned does not necessarily endorse or approve any

statement made, opinion expressed or conclusion drawn thereof, but approves the report only for the purpose

for which it has been submitted.

 Dr. Abhijit Das Dr. Dipankar Majumdar

 (Associate Professor)

Name & Designation of the HOD Name & Designation of Internal Guide

Page | 4

Contents

1. Introduction

2. Problem Definition

3. Literature Survey

4. Planning

5. Design

6. Results and Discussion

7. Conclusion and Future Scope

8. References / Bibliography

Page Numbers

5

6

7

8 -10

11 – 17

18 – 21

22

23

Page | 5

 INTRODUCTION
Genetic Algorithm (GA) is a search-based optimization technique based on the principles of Genetics and

Natural Selection. It is frequently used to find optimal or near-optimal solutions to difficult problems

which otherwise would take a lifetime to solve.

Optimization is the process of making something better. In any process, we have a set of inputs and a set

of outputs as shown in the following figure.

Optimization refers to finding the values of inputs in such a way that we get the “best” output values.

The definition of “best” varies from problem to problem, but in mathematical terms, it refers to maximizing

or minimizing one or more objective functions, by varying the input parameters.

The set of all possible solutions or values which the inputs can take make up the search space. In this

search space, lies a point or a set of points which gives the optimal solution. The aim of optimization

is to find that point or set of points in the search space.

 It is frequently used to solve optimization problems, in research, and in machine learning.Nature has always

been a great source of inspiration to all mankind. Genetic Algorithms (GAs) are search based algorithms

based on the concepts of natural selection and genetics.

GAs were developed by John Holland and his students and colleagues at the University of Michigan, most

notably David E. Goldberg and has since been tried on various optimization problems with a high degree

of success.

In GAs, we have a pool or a population of possible solutions to the given problem. These solutions then

undergo cross-over and mutation (like in natural genetics), producing new children, and the process is

repeated over various generations. Each individual (or candidate solution) is assigned a fitness value

(based on its objective function value) and the fitter individuals are given a higher chance to mate and

yield more “fitter” individuals. This is in line with the Darwinian Theory of “Survival of the Fittest”.

In this way we keep “evolving” better individuals or solutions over generations, till we reach a stopping

criterion.

Genetic Algorithms are sufficiently randomized in nature, but they perform much better than random local

search (in which we just try various random solutions, keeping track of the best so far), as they exploit

historical information as well.

Page | 6

 PROBLEM DEFINITION

PROBLEM-1

 ‘n’ aircrafts need to be scheduled.

 These ‘n’ aircrafts have different arrivaland departure time

 Only one aircrafts can carry at a time (only one runway is available)

 Aircrafts need to make prior bookings with airport authority.

 The airport authority have fixed the charges per unit time. They also compensate the aircrafts

agencies in case of delay.This amount is also fixed per unit time.

 Schedule the ‘n’ aircrafts in such a way that the airport authorities makes max income.

PROBLEM-2

 Solve the above problem with the same constraints as stated above such that only two aircrafts can

carry out their activity at a time (only two runways are available).

Domain-: C programming language

Page | 7

 LITERATURE SURVEY

Previously we have worked on the problem using genetic algorithm where we had schedule n jobs. There

were two machines A and B. Each job had different processing time for two different machine.We had to

schedule the jobs in such a way on the two machines that they be executed in the least possible time.The

processors were independent of each other.All the jobs were executed in the least possible time.

Genetic Algorithm (GA) is a search-based optimization technique based on the principles of Genetics and

Natural Selection. It is frequently used to find optimal or near-optimal solutions to difficult problems

which otherwise would take a lifetime to solve.

We start with an initial population (which may be generated at random or seeded by other heuristics), select

parents from this population for mating. Apply crossover and mutation operators on the parents to generate

new off-springs. And finally these off-springs replace the existing individuals in the population and the

process repeats. In this way genetic algorithms actually try to mimic the human evolution to some extent.

One of the most important decisions to make while implementing a genetic algorithm is deciding the

representation that we will use to represent our solutions. It has been observed that improper representation

can lead to poor performance of the GA.

Therefore, choosing a proper representation, having a proper definition of the mappings between the

phenotype and genotype spaces is essential for the success of a GA.

In this section, we present some of the most commonly used representations for genetic algorithms.

However, representation is highly problem specific and the reader might find that another representation

or a mix of the representations mentioned here might suit his/her problem better.

Page | 8

PLANNING
Structure templates used:
1.To represent the chromosomes

typedef struct chrom

{

int bit[MAX];

int fit;

}chrom;

This structure template called chrom contains bit which represent the chromosome and fit represent their

corresponding fitness value.

 bit[0] bit[1] bit[2] bit[3] bit[4] …….. bit

[n-1]

row 1 0 1 0 0 1 …….. 0

row 2 1 1 1 1 0 …….. 0

row 3 0 0 0 1 1 …….. 1

row 4 1 1 1 0 0 …….. 0

 CHROMOSOME REPRESENTATION

We take an arrray of structure of chrom type of size 4 in order to save 4 chromosomes for the population.

Each population contains 4 chromosomes.

We generate the population of 4 chromosomes randomly

 each row is a chromosomes

 each row(chromosome) consist of 'n' number of genes.

 i.e, here n means the number of genes = number of aircrafts to be scheduled and a fitness value is calculated

for each chromosomes.The chromosomes are generated randomly.

We make 2 population set , where a current set has the initial four chromosomes and the next set contains

chromosomes produced by the first set and so on until we finish the number of iterations.

We have use chrom final:-

final structure of type chrom saves the best chromosomes foud during the full iteration .

2.To represent the aircrafts.

typedef struct Aircraft

 {

 int arrival_time;

 int departure_time;

 int cost;

 int time;

 }aircraft;

We take an arrray of structure of aircraft type of in order to save the information of all the aircrafts.i.e,their

arrival times, departure times, the time that they will require to complete their jobs and the cost incurred by

them.We make an array of structure of type aircrafts of size n. Here ‘n’ is the number of aircrafts to be

scheduled.

Page | 9

Working of Genetic Algorithm:

 Algorithm to solve the problem 1 and 2

integer number,payback,earn are declared as global variables

aircrafts[max] is globally declare

Step 1: Begin

Step 2: Declaration int num,i,j,k,maxprofit=0;

Step 3: Print (welcome to scheduling)

 Print (enter the number of aircrafts)

 Read number

 Print (enter the amount airport authority charges per unit time)

 Read earn

 Print (enter the amount agency pays back per unit time)

 Read Payback

Step 4: create function generate(aeroplane)

Step 5: sort (aeroplane)

 sortingwithin(aeroplane)

Step 6:Print(Please enter the no. of iterations)

Step 7:Read num

Step 8:chrom popcurrent[4]

 chrom popnext[4]

Step 9: for loop(i=0 to num)

 9.1: Print iteration-->i

 9.2:for(j=0 to j<4)

 popnext[j]=popcurrent[j]

 9.3:end of for(j)

Page | 10

 pickchroms(popnext)

 check(popnext)

 crossover(popnext)

 check(popnext)

 mutation(popnext)

 check(popnext)

 9.4: for(j=0 to j<4)

 popcurrent[j]=popnext[j]

 9.5:endof for(j)

Step 10:end of for(i)

Step 11:Print popcurrent

Step 12:Print(the best chromosome found so far is)

Step 13:Print final

Step 14:Print(0 means that job is rejected,1 means the job is chosen)

Step 15:printingthebestsolution(final)

Step16:Stop

Page | 11

PROBLEM DESIGN

FUNCTIONS USED

1.Picking the best chromosomes

Gentic Algorithm is based on "survival of the fittest".So we choose the first two best chromosomes from

the old population according to the fitness value(whoever has the highst fitness function is chosen)

We do so by sorting the 4 chromosomes accrording to their fitness vaues.(in the descending order).

Algorithm for picking the best chromosomes

pickchroms(chrom popnext[4])

Step 1:Begin

Step 2:Declaration- int i,j,k;

Step 3:make a structute called temp of type chrom

Step 4:for loop(i=0 to i<3)

 4.1:for loop(j=0 to j<3)

 if(popnext[j].fit<popnext[j+1].fit)

 then swap(popnext[j],popnext[j+1])with the help of temp

 4.2:end of for (j)

Step 5:end of for if

Step 6:for(i=0 to i<4)//to print the chromosomes and their fitness values after sorting

 6.1:for(k=0 to k<(no of aircrafts))

 print popnext[i].bit[k]

 6.2:end of for k

 6.3:print popnext[i].fit

Step 7:end of for (i)

Step 8:Stop

2.Checking the population for a chromosomes with a highest fitness value than that of final

chromosome.

If we find a better chromosomes than that present in final,then we will save the better chromosomes in final.

Algorithm for searching the best chromosome and to save it in final

check(chrom popnext[4])

step1: Begin

step2:Declaration int i;

step 3: for loop(j=0 to j<4)

 3.1 if(popnext[j].fit> final.fit)

 final =popnext[j]

step 4: end of for (j)

step 5:stop

3.Cross Over to generate the children

We have picked the best two chromosomes .We create the children by crossing over these two best

chromosomes to create two children.The new population

is thus going to contain the two best chromosomes and their children.Single point crossover is conduct over

here.

Algorithm for cross-over

crossover(chrom popnext[4])

Step 1:Begin

Step 2:Declaration- int i,random;

Step 3:random=rand()

Step 4:random=random%(no of aircrafts)//choosing cross-over point

Step 5:for loop(i=0 t0 i<random)

Page | 12

 5.1:copy the bit[i] of 1st chromosome to bit[i] of 3rd chromosome

 5.2:copy the bit[i] of 2nd chromosome to bit[i] of 4th chromosome

Step 6:end of for

Step 7:for loop(i=random to i<no of aircrafts)

 7.1:copy the bit[i] of 2nd chromosome to bit[i] of 3rd chromosome

 7.2:copy the bit[i] of 1st chromosome to bit[i] of 4th chromosome

Step 8:end of for

Step 9:for loop(i=0 t0 i<4)

 9.1:calculate the fitness of each chromosome

Step 10:end of for

Step 11:Print the new population after doing crossover

Step 12:Stop

4.Mutation with a high probability

Mutation occurs in one chromosome in the set by inverting any one bit in the chromosomes randomly.

Algorithm for mutation in problem 1

mutation(chrom popnext[4])

Step 1:Begin

Step 2:Declaration- int random,col,value;

Step 3:random=rand()

Step 4:random=rand()%50

Step 5:if(random>25)

 5.1:col=rand()%(no of aircrafts)//choosing the gene

 5.2:row=rand()%4//choosing the chromosome

 5.3:if the chosen gene of the chosen chromosome i.e popcurrent[row].bit[col] == 0

 make it 1

 5.4:if the chosen gene of the chosen chromosome i.e popcurrent[row].bit[col] == 1

 make it 0

Step 6:end of if i.e step 5

Step 7:calculate the fitness function of the mutated chromosome

Step 8:print the mutated chromosome and its fitness value

Step 9:Stop

Algorithm for mutation for mutation in problem 2

mutation(chrom popnext[4])

Step 1:Begin

Step 2:Declaration- int random,col,value;

Step 3:random=rand()

Step 4:random=rand()%50

Step 5:if(random>25)

 5.1:col=rand()%(no of aircrafts)//choosing the gene

 5.2:row=rand()%4//choosing the chromosome

 5.3:if the chosen gene of the chosen chromosome i.e popcurrent[row].bit[col] == 0

 temporaryone = popnext[row]

 temporarytwo = popnext[row]

 temporaryone.bit[col]=1

 calculate temporaryone.fit

 temporarytwo.bit[col]=2

 calculate temporarytwo.fit

 5.3.1:if(temporaryone.fit > temporarytwo.fit)

 popnext[row]=temporaryone

 5.3.2:else

 popnext[row]=temporarytwo

 5.4:end of if

Page | 13

 5.5:if the chosen gene of the chosen chromosome i.e popcurrent[row].bit[col] == 1

 temporaryone = popnext[row]

 temporarytwo = popnext[row]

 temporaryone.bit[col]=0

 calculate temporaryone.fit

 temporarytwo.bit[col]=2

 calculate temporarytwo.fit

 5.5.1:if(temporaryone.fit > temporarytwo.fit)

 popnext[row]=temporaryone

 5.5.2:else

 popnext[row]=temporarytwo

 5.6:end of if

 5.7:if the chosen gene of the chosen chromosome i.e popcurrent[row].bit[col] == 2

 temporaryone = popnext[row]

 temporarytwo = popnext[row]

 temporaryone.bit[col]=0

 calculate temporaryone.fit

 temporarytwo.bit[col]=1

 calculate temporarytwo.fit

 5.7.1:if(temporaryone.fit > temporarytwo.fit)

 popnext[row]=temporaryone

 5.7.2:else

 popnext[row]=temporarytwo

 5.8:end of if

Step 6:end ofif

Step 7:calculate the fitness function of the mutated chromosome

Step 8:print the mutated chromosome and its fitness value

Step 9:Stop

5.Loop Termination

The number of iteration are entered by the user. After every iteration we get a new set of chromosomes and

the steps is carried out in this specific order -->1,2,3,2,4,2

6.Sorting the aircrafts according to arrival times

We are going to sort the aircrafts according to their arrival times (in the ascending order)We do so to

maintain the order in which the aircraft are coming.

Algorithm for sorting the aircraft according to their arrival times

sort(aircraft aeroplane[no of aircrafts])

Step 1:Begin

Step 2:Declaration- int i,j;

Step 3:make a structute called temp of type aircraft

Step 4:for loop(i=0 to i<3)

 4.1:for loop(j=0 to j<3)

 if(aeroplane[j].arrival_time>aeroplane[j+1].arrival_time)

 then swap(aeroplane[j],aeroplane[j+1])with the help of temp

 4.2:end of for (j)

Step 5:print aeroplane in the sorted order

Step 6:Stop

7.Sorting the aircrafts with the same arrivals times according to their departure times.

We have already sorted the aircrafts according to their arrivals times.Now we will sort the ones with the

same arrivals time according

Page | 14

to their departure time(in the ascending order)

Algorithm for sorting the aircraft with the same arrival times according to their departure times

sortingwithin(aircraft aeroplane[no of aircrafts])

Step 1:Begin

Step 2:Declaration- int p,c,k,i,j;

Step 3:Initialise c to 0

Step 4:for(p=0 to p<(number of aircrafts))

 4.1: if(aeroplane[p].arrival_time == aeroplane[p+1].arrival_time)

 then c++

 p++

 4.1.1: check if(aeroplane[p].arrival_time == aeroplane[p+1].arrival_time)

 if true then goto Step 4.1

 4.2: end of if

 4.3: if(c!=0)

 4.3.1: k=p-c

 4.3.2: for(i=k to i<=p)

 4.3.2.1: for(j=k to j<=p)

 if(aeroplane[i].departure_time < aeroplane[j].departure_time)

 then swap(aeroplane[j],aeroplane[i])with the help of temp

 4.3.2.2:end of for(j)

 4.3.3:end of for(i)

 4.4:end of if i.e, Step 4.3

 4.5:c=0

Step 5:end of for(p)

Step 6:Stop

8.Printing the solution

This function is used to convert the genotype into the pheno-type.So this is used to decode the solution

chromosomes to represent the actual real word solution space.

9.Generating the population of chromosomes

Algorithm for generating the population containing four chromosomes in problem1

evpop(chrom popcurrent[4])

Step 1:Begin

Step 2:Declaration- int i,j,value,k,random;

Step 3:for(j=0 to j<4)

 3.1:for(i=0 to i<(number of aircrafts))

 random=rand()

 random=random%2

 popcurrent[j].bit[i]=random

 3.2end of for(i)

 3.3 calculation the fitness function of the chromosome popcurrent[j]

Step 4:end of for(j)

Step 5:for(i=0 to i<4)//to print the chromosomes and their fitness values

 5.1:for(k=0 to k<(no of aircrafts))

 print popcurrent[i].bit[k]

 5.2:end of for k

 5.3:print popcurrent[i].fit

Step 6:end of for (i)

Step 7:Stop

Page | 15

Algorithm for generating the population containing four chromosomes in problem2

evpop(chrom popcurrent[4])

Step 1:Begin

Step 2:Declaration- int i,j,value,k,random;

Step 3:for(j=0 to j<4)

 3.1:for(i=0 to i<(number of aircrafts))

 random=rand()

 random=random%2

 popcurrent[j].bit[i]=random

 3.2end of for(i)

 3.3 calculation the fitness function of the chromosome popcurrent[j]

Step 4:end of for(j)

Step 5:for(i=0 to i<4)//to print the chromosomes and their fitness values

 5.1:for(k=0 to k<(no of aircrafts))

 print popcurrent[i].bit[k]

 5.2:end of for k

 5.3:print popcurrent[i].fit

Step 6:end of for (i)

Step 7:Stop

10.Generation of aeroplane which is an array of structures

Algorithm for generating the array of structure called aeroplane of type aircraft

containing the information of all the aircrafts

generate(aircraft aeroplane[number of aircrafts])

Step 1:Begin

Step 2:Declaration- int i;

Step 3:for(i=0 to i<(number of aircrafts))

 3.1:Read aeroplane[i].arrival_time

 3.2:Read aeroplane[i].departure_time

 3.3:Calculate aeroplane[i].cost=((aeroplane[i].departure_time-

aeroplane[i].arrival_time)*earn)

 3.4:aeroplane[i].time=aeroplane[i].departure_time-aeroplane[i].arrival_time

Step 4:end of for(i)

Step 5:Stop

PROBLEM SPECIFIC PART

CHROMOSOME REPRESENTATION OF PROBLEM 1

0 means that the job is rejeted 0.

1 means that the job will be executed on runway 1.

So we are using 0 and 1 only.So each gene of the chromosome has the value 0 or 1. For 'n' aircrafts each

chromosome contains n genes.

FITNESS FUNCTION OF PROBLEM 1

We maintain the variable c,z, and m.c keeps track of the current time.

 z contain the total amount that can be earned if all the jobs were executed on time without any delay.

m contains the total amount that need to be paid back to all aircrafts for causing them delay.

Total profit =>z-m;

Page | 16

Algorithm for calculating fitness function of problem 1

x(chrom popcurrent)

Step 1:Begin

Step 2:Declaration- int i,k,c,m,z;

Step 3:Initialise z and m to 0

Step 4:for loop(i=random to i<no of aircrafts)

 4.1:if popcurrent.bit[i]==1

 then k=i;

 c=aeroplane[k].departure_time;

 z=aeroplane[k].cost;

 goto step 6

Step 5:end of for (i)

Step 6:for loop(k+1 to number)

 6.1: if popcurrent.bit[i]==1

 then

 z=z+aeroplane[i].cost;

 if(c>aeroplane[i].arrival_time){

 m=m+((c-aeroplane[i].arrival_time)*pay_back)

 }

 else{

 c=aeroplane[i].departure_time;

 }

 6.2:End of if i.e Step 6.1

Step 7:End of for(i)

Step 8:k=z-m

Step 9:Stop

CHROMOSOME REPRESENTATION OF PROBLEM 2

0 means that the job is rejeted 0.

1 means that the job will be executed on runway 1.

2 means that the job will be executed on runway 2.

So we are using 0,1 and 2 only.So each gene of the chromosome has the value 0 or 1. For 'n' aircrafts each

chromosome contains n genes.

FITNESS FUNCTION OF PROBLEM 2

We maintain 4 variables d,c,z and m. c keeps track of the current time on runway one.d keeps track of the

current time on runway two.

z cointains the total amount that can be earned if all the jobs were executed on time(on runway 1 as well as

on runway two).m contains the total amount that needs to be paid back to all the aircrafts for causing them

delay (on runway 1 as well as on runway 2).

Algorithm for calculating fitness function of problem 2
x(chrom popcurrent)

Step 1:Begin

Step 2:Declaration- int c,d,z,k,m,i;

Step 3:Initialise c,d,z,k and m to 0

Step 4:for(i=0 to i<(number of aircrafts))

 4.1:check if((popcurrent.bit[i]==1)&&(i!=0)&&(c==0))

 then c=aeroplane[i].departure_time

 and z=z+aeroplane[i].cost

 4.2:check else if((popcurrent.bit[i]==2)&&(i!=0)&&(d==0))

 then d=aeroplane[i].departure_time

Page | 17

 and z=z+aeroplane[i].cost

 4.3:check else if((popcurrent.bit[i]==1)&&(i==0)&&(c==0))

 then z=z+aeroplane[i].cost

 and c=aeroplane[i].departure_time

 4.4:check else if((popcurrent.bit[i]==2)&&(i==0)&&(d==0))

 then z=z+aeroplane[i].cost

 and d=aeroplane[i].departure_time

 4.5:check else if((popcurrent.bit[i]==1)&&(i!=0)&&(c!=0))

 then z=z+aeroplane[i].cost

 4.5.1: if(c>aeroplane[i].arrival_time)

 m=(m+((c-aeroplane[i].arrival_time)*pay_back))

 c=c+aeroplane[i].time

 4.5.2: else

 c=aeroplane[i].departure_time

 4.6:end of Step 4.5

 4.7:check else if((popcurrent.bit[i]==2)&&(i!=0)&&(d!=0))

 z=z+aeroplane[i].cost;

 4.7.1: if(d > aeroplane[i].arrival_time)

 m=(m+((d - aeroplane[i].arrival_time)*pay_back));

 d=d+aeroplane[i].time;

 4.7.2: else

 d=aeroplane[i].departure_time;

 4.8:end of Step 4.7

 4.9:else z=z+0

Step 5:k=z-m and return k

Step 6:Stop

Page | 18

 RESULT

Page | 19

Page | 20

Page | 21

Page | 22

 CONCLUSION

Genetic Algorithms have the ability to deliver a “good-enough” solution “fast-enough”. This makes genetic

algorithms attractive for use in solving optimization problems. It does not require any derivative information

(which may not be available for many real-world problems).It is faster and more efficient as compared to

the traditional methods. Has very good parallel capabilities. Optimizes both continuous and discrete

functions and also multi-objective problems. It provides a list of “good” solutions and not just a single

solution. We always gets an answer to the problem, which gets better over the time. Useful when the search

space is very large and there are a large number of parameters involved.

GAs are not suited for all problems, especially problems which are simple and for which derivative

information is available. Fitness value is calculated repeatedly which might be computationally expensive

for some problems. Being stochastic, there are no guarantees on the optimality or the quality of the solution.

If not implemented properly, the GA may not converge to the optimal solution.

Page | 23

 REFERENCES

 1. Eiben, A. E. et al (1994). "Genetic algorithms with multi-parent recombination". PPSN III:

Proceedings of the International Conference on Evolutionary Computation. The Third Conference

on Parallel Problem Solving from Nature: 78–87. ISBN 3-540-58484-6.

 2. Akbari, Ziarati (2010). "A multilevel evolutionary algorithm for optimizing numerical functions"

IJIEC 2 (2011): 419–430 [1]

 3. www.tutorialspoint.com/genetic_algorithm/index.html

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3-540-58484-6
http://growingscience.com/ijiec/Vol2/IJIEC_2010_11.pdf
http://www.tutorialspoint.com/

