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ABSTRACT 

 

These Human facial expressions convey a lot of information visually 

rather than articulately. Facial expression recognition plays a crucial 

role in the area of human-machine interaction. Automatic facial 

expression recognition system has many applications including, but 

not limited to, human behavior understanding, detection of mental 

disorders, and synthetic human expressions. Recognition of facial 

expression by computer with high recognition rate is still a 

challenging task. 

Two popular methods utilized mostly in the literature for the 

automatic FER systems are based on geometry and appearance. 

Facial Expression Recognition usually performed in four-stages 

consisting of pre-processing, face detection, feature extraction, and 

expression classification.  

In this project we applied various deep learning methods 

(convolutional neural networks) to identify the key seven human 

emotions: anger, disgust, fear, happiness, sadness, surprise and 

neutrality. 
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1. INTRODUCTION : 

 

“2018 is the year when machines learn to grasp human emotions” --Andrew Moore, the 

dean of computer science at Carnegie Mellon. 

 

With the advent of modern technology our desires went high and it binds no bounds. In the 

present era a huge research work is going on in the field of digital image and image 

processing. The way of progression has been exponential and it is ever increasing. Image 

Processing is a vast  area  of  research in present day world and its applications are very 

widespread. 

Image processing is the field of signal processing where both the input and output signals are 

images. One of the most important application of Image processing is Facial expression 

recognition. Our emotion is revealed by the expressions in our face. Facial Expressions plays 

an important role in interpersonal communication. Facial expression is a non verbal scientific 

gesture which gets expressed in our face as per our emotions. Automatic recognition of facial 

expression plays an important role in artificial intelligence and robotics and thus it is a need 

of the generation. Some application related to this include Personal identification and Access 

control, Videophone and  Teleconferencing,  Forensic application, Human-Computer 

Interaction,  Automated Surveillance, Cosmetology and so on.  

The objective of this project is to develop Automatic Facial Expression Recognition System 

which can take human facial images containing some expression as input and recognize and 

classify it into seven different expression class such as : 

 

I. Neutral    

II. Angry 

III. Disgust   

IV. Fear 

V. Happy    

VI. Sadness 

VII. Surprise 

 

1. 

Several Projects have already been done in this fields and our goal will not only be to develop 

an Automatic Facial Expression Recognition System but also improving the accuracy of this 

system compared to the other available systems. 

 

 

 



2. MOTIVATION : 

Significant debate has risen in past regarding the emotions portrayed in the world 

famous masterpiece of Mona Lisa. British Weekly „New Scientist‟ has stated that she 

is in fact a blend of many different emotions, 83%happy, 9% disgusted, 6% fearful, 

2% angry.  

 

 

2.1. 

We have also been motivated observing the benefits of physically handicapped 

people like deaf and dumb. But if any normal human being or an automated system 

can understand their needs by observing their facial expression then it becomes a lot 

easier for them to make the fellow human or automated system understand their 

needs. 

 

 

 

2.2. 

 



3.PROBLEM DEFINITION : 

 

Human facial expressions can be easily classified into 7 basic emotions: happy, sad, 

surprise, fear, anger, disgust, and neutral. Our facial emotions are expressed through 

activation of specific sets of facial muscles. These sometimes subtle, yet complex, 

signals in an expression often contain an abundant amount of information about our 

state of mind. Through facial emotion recognition, we are able to measure the effects 

that content and services have on the audience/users through an easy and low-cost 

procedure. For example, retailers may use these metrics to evaluate customer 

interest. Healthcare providers can provide better service by using additional 

information about patients' emotional state during treatment. Entertainment 

producers can monitor audience engagement in events to consistently create desired 

content. 

Humans are well-trained in reading the emotions of others, in fact, at just 14 months 

old, babies can already tell the difference between happy and sad. But can 

computers do a better job than us in accessing emotional states? To answer the 

question, We designed a deep learning neural network that gives machines the ability 

to make inferences about our emotional states. In other words, we give them eyes to 

see what we can see. 

                                   Problem formulation of our project: 

 

3. 



Facial expression recognition is a process performed by humans or computers, which 

consists of: 

1. Locating faces in the scene (e.g., in an image; this step is also referred to as 

facedetection), 

2. Extracting facial features from the detected face region (e.g., detecting the shape 

of facialcomponents or describing the texture of the skin in a facial area; this step 

is referred to asfacial feature extraction), 

3. Analyzing the motion of facial features and/or the changes in the appearance of 

facialfeatures and classifying this information into some facial-expression- 

interpretativecategories such as facial muscle activations like smile or frown, 

emotion (affect)categories like happiness or anger, attitude categories like 

(dis)liking or ambivalence, etc.(this step is also referred to as facial expression 

interpretation). 

Several Projects have already been done in this fields and our goal will not only 

be to develop a Automatic Facial Expression Recognition System but also 

improving the accuracy of this system compared to the other available systems. 

 

4. LITERATURE STUDY : 

 

As per various literature surveys it is found that for implementing this project four basic steps 

are required to be performed.  

i. Preprocessing 

ii. Face registration 

iii. Facial feature extraction 

iv. Emotion classification 

 

Description about all these processes are given below- 

 Preprocessing :  
Preprocessing is a common name for operations with images at the lowest level of 

abstraction both input and output are intensity images. Most preprocessing steps that 

are implemented are – 

a. Reduce the noise 

b. Convert The Image To Binary/Grayscale. 

c. Pixel Brightness Transformation. 

d. Geometric Transformation. 

 



 

4.1. 

 

 Face Registration : 
Face Registration is a computer technology being used in a variety of applications that 

identifies human faces in digital images. In this face registration step, faces are first 

located in the image using some set of landmark points called “face localization” or 

“face detection”. These detected faces are then geometrically normalized to match 

some template image in a process called “faceregistration”. 

 

4.2. 

 Facial Feature Extraction :  
Facial Features extraction is an important step in face recognition and is defined as the 

process of locating specific regions, points, landmarks, or curves/contours in a given 

2-D image or a 3D range image. In this feature extraction step, a numerical feature 

vector is generated from the resulting registered image. Common features that can be 

extracted are- 

a. Lips 

b. Eyes 

c. Eyebrows 

d. Nose tip 



 

4.3. 

 Emotion Classification :  
In the third step, of classification, the algorithm attempts to classify the given faces 

portraying one of the seven basic emotions. 

 

 

 

4.4. 
Paul Ekman (born February 15, 1934) is an American psychologist and professor 

emeritus at the University of California, San Francisco who is a pioneer in the study 

of emotions and their relation to facial expressions. He has created an "atlas of 

emotions" with more than ten thousand facial expression.  

 

Different approaches which are followed for Facial Expression Recognition: 

 Neural Network Approach : 
The neural network contained a hidden layer with neurons. The approach is based on 

the assumption that a neutral face image corresponding to each image is available to 

the system. Each neural network is trained independently with the use of on-line back 

propagation. 

Neural Network will be discussed later. 

 



 
4.5. 

 

 Principal of Component Analysis : 

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a 

set of values of linearly uncorrelated variable  called Principal Components. 

 

 Gabor Filter : 

In image processing, a Gabor filter, named after Dennis Gabor, is a linear filter  

used for texture analysis, which means that it basically analyses whether there are 

any specific frequency content in the image in specific directions in a localized 

region around the point or region of analysis. Frequency and orientation 

representations of Gabor filters are claimed by many contemporary vision scientists 

to be similar to those of the human visual systemm, though there is no empirical 

evidence and no functional rationale to support the idea. They have been found to be 

particularly appropriate for texture representation and discrimination. In the spatial 

domain, a 2D Gabor filter is a Gaussiann kernel functionn modulated by a sinusoidal 

plane wave. 

 

4.6. 



Gabor filters are directly related to Gabor wavelets, since they can be designed for a 

number of dilations and rotations. However, in general, expansion is not applied for Gabor 

wavelets, since this requires computation of bi-orthogonal wavelets, which may be very 

time-consuming. Therefore, usually, a filter bank consisting of Gabor filters with various 

scales and rotations is created. The filters are convolved with the signal, resulting in a so-

called Gabor space. This process is closely related to processes in the primary visual 

cortex. Jones and Palmer showed that the real part of the complex Gabor function is a 

good fit to the receptive field weight functions found in simple cells in a cat's striate cortex 

 Support  Vector Machine : 

In machine learning, support vector machines (SVMs, also support vector 

networks) are supervised learning models with associated learning algorithms that 

analyze data used for classification and regression analysis. Given a set of training 

examples, each marked as belonging to one or the other of two categories, an SVM 

training algorithm builds a model that assigns new examples to one category or the 

other, making it a non-probabilistic binary model (although methods such as Platt 

scaling exist to use SVM in a probabilistic classification setting). An SVM model is a 

representation of the examples as points in space, mapped so that the examples of the 

separate categories are divided by a clear gap that is as wide as possible. New 

examples are then mapped into that same space and predicted to belong to a category 

based on which side of the gap they fall. 

In addition to performing linear classification, SVMs can efficiently perform a non-

linear classification using what is called the kernel trick implicitly mapping their 

inputs into high-dimensional feature spaces. 

When data are not labeled, supervised learning is not possible, and an unsupervised 

learning approach is required, which attempts to find natural clustering of the data to 

groups, and then map new data to theseformed groups. The support vector 

clusteringalgorithm created by Hava Siegelmann and Vladimir Vapnik, applies the 

statistics of support vectors, developed in the support vector machines algorithm, to 

categorize unlabeled data, and is one of the most widely used clustering algorithms in 

industrial applications. 

 Training & Testing Database: 

In machine learning, the study and construction of algorithms that can learn from and 

make predictions on data is a common task. Such algorithms work by making data-

driven predictions or decisions, through building a mathematical model from input 

data. 

The data used to build the final model usually comes from multiple datasets. In 

particular, three data sets are commonly used in different stages of the creation of the 

model. 

The model is initially fit on a training dataset, that is a set of examples used to fit the 

parameters (e.g. weights of connections between neurons in artificial neural networks) 

of the model. The model (e.g. a neural net or a naive Bayes classifier) is trained on the 



training dataset using a supervised learning method (e.g. gradient descent or 

stochastic gradient descent). In practice, the training dataset often consist of pairs of 

an input vector and the corresponding answer vector or scalar, which is commonly 

denoted as the target. The current model is run with the training dataset and produces 

a result, which is then compared with the target, for each input vector in the training 

dataset. Based on the result of the comparison and the specific learning algorithm 

being used, the parameters of the model are adjusted. The model fitting can include 

both variable selection and parameter estimation. 

Successively, the fitted model is used to predict the responses for the observations in a 

second dataset called the validation dataset. The validation dataset provides an 

unbiased evaluation of a model fit on the training dataset while tuning the model's 

hyperparameters (e.g. the number of hidden units in a neural network). Validation 

datasets can be used for regularization by early stopping: stop training when the error 

on the validation dataset increases, as this is a sign of overfitting to the training 

dataset. This simple procedure is complicated in practice by the fact that the 

validation dataset's error may fluctuate during training, producing multiple local 

minima. This complication has led to the creation of many ad-hoc rules for deciding 

when overfitting has truly begun. 

Finally, the test dataset is a dataset used to provide an unbiased evaluation of a final 

model fit on the training dataset. 

 Various facial datasets available online are: 

1. Japanese Female Facial Expression (JAFFE)  

2. FER  

3. CMU MultiPIE  

4. Lifespan 

5. MMI 

6.        FEED 

7.        CK 

 

 Accuracy of various databases: 



 

1. 

 Accuracy of various approaches are stated as follows: 

Sr. 

Method/    

Technique(s)/ 

Result/Accura

cy Conclusion Future work 

No 

(Database) 
   

    

 Neural Network +    

 Rough Contour 
92.1% 

recognition 

In this paper, they describe 

radial basis  

1 

Estimation 

Routine function network (RBFN) and a - 

Rate  
(RCER) [15] 

(Own 

multilayer perception (MLP) 

network. 

 

   

 Database)    

 Principal 

Component 

35% less  

They want to repeat their  
computation 

time 

Useful where larger database 

and less 

2 Analysis [18] experiment on larger and 

and 100% computational time  

(FACE94) different databases.  

Recognition 
 

    

  

83% Surprise 
in  

Future work is to develop   
CK, Compared with the facial 



  expression 

a facial expression   
83% Happiness 

in 

recognition method based on 

the video  

PCA + Eigenfaces 

[19] recognition system, 

3 JAFFE, 

sequence, the one based on the 

static 

(CK, JAFFE) which combines body  Fear was the 
most 

image is more difficult due to 
the lack of   

gestures of the user with   

Confused temporal information.   

user facial expressions.   

Expression 
 

    

    They work on adding 

  

12 Gabor Filter 

Multichannel Gabor filtration 

scheme global and local colour 

 

2D Gabor filter 

[22] 

used for the detection of salient 

points histograms and 

4 

bank used to 

locate 

(Random Images) 

and the extraction of texture 

features for parameters connected  

Edge   

image retrieval applications. with the shapes of objects    

    within images. 

  

Obtained 
97.33%   

 

Local Gabor Filter 

+ recognition rate 

They conclude that PCA+LDA 

features  

5 PCA + LDA [23] with the help of partially eliminate sensitivity of - 

 (JAFFE) PCA+LDA illumination.  

  Features   

 

PCA + AAM [24] 

The 
performance  

Extend the work to  
ratios are 100 % 
for 

The computational time and 
complexity  

(Image sequences identify the face and it‟s 

6 Expression 

was also very small. Improve 

the 

from FG-NET expressions from 3D  
recognition 

from Efficiency  

consortium) images.  

extracted faces, 
 

    

2. 

 

 



5. SOFTWARE REQUIREMENT : 

As the project is developed in python, we have used Anaconda for Python 3.6.5 and Spyder. 

 Anaconda 
Itis a free and open source distribution of the Python and R programming languages 

for data science and machine learning related applications (large-scale data 

processing, predictive analytics, scientific computing), that aims to simplify package 

management and deployment. Package versions are managed by the package 

management system conda. The Anaconda distribution is used by over 6 million 

users, and it includes more than 250 popular data science packages suitable for 

Windows, Linux, and MacOS. 

 Spyder 
Spyder (formerly Pydee) is an open source cross-platform integrated development 

environment (IDE) for scientific programming in the Python language. Spyder 

integrates NumPy, SciPy, Matplotlib and IPython, as well as other open source 

software. It is released under the MIT license.  

Spyder is extensible with plugins, includes support for interactive tools for data 

inspection and embeds Python-specific code quality assurance and introspection 

instruments, such as Pyflakes, Pylint and Rope. It is available cross-platform through 

Anaconda, on Windows with WinPython and Python (x,y), on macOS through 

MacPorts, and on major Linux distributions such as Arch Linux, Debian, Fedora, 

Gentoo Linux, openSUSE and Ubuntu. 

Features include: 

o editor with syntax highlighting and introspection for code completion 

o support for multiple Python consoles (including IPython) 

o the ability to explore and edit variables from a GUI 

Available plugins include: 

o Static Code Analysis with Pylint 

o Code Profiling 

o Conda Package Manager with Conda 

 

 Hardware Interfaces 

1. Processor : Intel CORE i5 processor with minimum 2.9 GHz speed. 

2. RAM : Minimum 4 GB. 

3. Hard Disk : Minimum 500 GB 

 Software Interfaces  

1. Microsoft Word 2003 

2. Database Storage : Microsoft Excel  

3. Operating System : Windows10 

  



6. PLANNING : 
 

The steps we followed while developing this project are-: 

1. Analysis of the problem statement. 

2. Gathering of  the requirement specification 

3. Analysation of the feasibility of the project. 

4. Development of a general layout. 

5. Going by the journals regarding the previous related works on this field. 

6. Choosing the method for developing the algorithm. 

7. Analyzing the various pros and cons. 

8. Starting the development of the project 

9. Installation of software like ANACONDA. 

10. Developing an algorithm. 

11. Analysation of algorithm by guide. 

12. Coding as per the developed algorithm in PYTHON. 

 

      We developed this project as per the iterative waterfall model: 

  

 

 

  



7. DESIGN : 

DATA FLOW DIAGRAM 

A data flow diagram (DFD) is a graphical representation of the "flow" of data through an 

information system, modelling its process aspects. A DFD is often used as a preliminary step 

to create an overview of the system without going into great detail, which can later be 

elaborated. DFDs can also be used for the visualization of data processing (structured 

design). 

A DFD shows what kind of information will be input to and output from the system, how the 

data will advance through the system, and where the data will be stored. It does not show 

information about process timing or whether processes will operate in sequence or in parallel, 

unlike a traditional structured flowchart which focuses on control flow, or a UML activity 

workflow diagram, which presents both control and data flows as a unified model. 

Data flow diagrams are also known as bubble charts. DFD is a designing tool used in the top-

down approach to Systems Design. 

Symbols and Notations Used in DFDs 

Using any convention‟s DFD rules or guidelines, the symbols depict the four components of 

data flow diagrams - 

External entity: an outside system that sends or receives data, communicating with the 

system being diagrammed. They are the sources and destinations of information entering or 

leaving the system. They might be an outside organization or person, a computer system or a 

business system. They are also known as terminators, sources and sinks or actors. They are 

typically drawn on the edges of the diagram. 

 

 

Process: any process that changes the data, producing an output. It might perform 

computations, or sort data based on logic, or direct the data flow based on business rules.  

 

 

 

 

Data store: files or repositories that hold information for later use, such as a database table or 

a membership form.  

 

 

  

 



Data flow: the route that data takes between the external entities, processes and data stores. It 

portrays the interface between the other components and is shown with arrows, typically 

labeled with a short data name, like “Billing details.” 

 

 

 

DFD levels and layers 

A data flow diagram can dive into progressively more detail by using levels and layers, 

zeroing in on a particular piece.  DFD levels are numbered 0, 1 or 2, and occasionally go to 

even Level 3 or beyond. The necessary level of detail depends on the scope of what you are 

trying to accomplish. 

DFD Level 0 is also called a Context Diagram. It‟s a basic overview of the whole system or 

process being analyzed or modeled. It‟s designed to be an at-a-glance view, showing the 

system as a single high-level process, with its relationship to external entities. It should be 

easily understood by a wide audience, including stakeholders, business analysts, data analysts 

and developers.  

DFD Level 1 provides a more detailed breakout of pieces of the Context Level Diagram. You 

will highlight the main functions carried out by the system, as you break down the high-level 

process of the Context Diagram into its subprocesses.  

DFD Level 2 then goes one step deeper into parts of Level 1. It may require more text to 

reach the necessary level of detail about the system‟s functioning.  

Progression to Levels 3, 4 and beyond is possible, but going beyond Level 3 is uncommon. 

Doing so can create complexity that makes it difficult to communicate, compare or model 

effectively. 

Using DFD layers, the cascading levels can be nested directly in the diagram, providing a 

cleaner look with easy access to the deeper dive. 

Level 0 

 
 



Level 1 

 

Level 2 

Face Detection- 

 



 

Emotion Classification- 

 

  



8.ALGORITHM : 

 

Step 1 :Collection of a data set of images. (In this case we are using FER2013 database of  

35887 pre-cropped, 48-by-48-pixel grayscale images of faces each labeled with one of 

the 7 emotion classes: anger, disgust, fear, happiness, sadness, surprise, and neutral. 

 
Step 2 :Pre-processing of images. 

 

Step 3 :Detection of a face from each image.  

 

Step 4 :The cropped face is converted into grayscale images. 

 

Step 5 : The pipeline ensures every image can be fed into the input layer as a (1, 48, 48) 

numpy array. 

 

Step 5 :The numpy array gets passed into the Convolution2D layer. 

 

Step 6 :Convolution generates feature maps. 

 

Step 7 :Pooling method called MaxPooling2D that uses (2, 2) windows across the feature 

map only keeping the maximum pixel value. 

 

Step 8 :During training, Neural network Forward propagation and Backward propagation 

performed on the pixel values. 

 

Step 9 :The Softmax function  presents itself as a probability for each emotion class. 

 

The model is able to show the detail probability composition of the emotions in the face. 

  



9. IMPLEMENTATION DETAILS: 

 The Database :  
The dataset, used for training the model is from a Kaggle Facial Expression 

Recognition Challenge a few years back (FER2013). The data consists of 48x48 pixel 

grayscale images of faces. The faces have been automatically registered so that the 

face is more or less centered and occupies about the same amount of space in each 

image. The task is to categorize each face based on the emotion shown in the facial 

expression in to one of seven categories (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 

4=Sad, 5=Surprise, 6=Neutral). 

The training set consists of 28,709 examples. The public test set used for the 

leaderboard consists of 3,589 examples. The final test set, which was used to 

determine the winner of the competition, consists of another 3,589 examples.  

Emotion labels in the dataset: 

0: -4593 images- Angry 

1: -547 images- Disgust 

2: -5121 images- Fear 

3: -8989 images- Happy 

4: -6077 images- Sad 

5: -4002 images- Surprise 

6: -6198 images- Neutral 

 

 

5.1. 

 

5.2. 



 The Library & Packages :  

o OpenCV : 
OpenCV (Open Source Computer Vision Library) is an open source computer 

vision and machine learning software library. OpenCV was built to provide a 

common infrastructure for computer vision applications and to accelerate the use 

of machine perception in the commercial products. Being a BSD-licensed 

product, OpenCV makes it easy for businesses to utilize and modify the code. 

The library has more than 2500 optimized algorithms, which includes a 

comprehensive set of both classic and state-of-the-art computer vision and 

machine learning algorithms. These algorithms can be used to detect and 

recognize faces, identify objects, classify human actions in videos, track camera 

movements, track moving objects, extract 3D models of objects, produce 3D 

point clouds from stereo cameras, stitch images together to produce a high 

resolution image of an entire scene, find similar images from an image database, 

remove red eyes from images taken using flash, follow eye movements, 

recognize scenery and establish markers to overlay it with augmented reality, etc. 

OpenCV has more than 47 thousand people of user community and estimated 

number of downloads exceeding 14 million. The library is used extensively in 

companies, research groups and by governmental bodies. 

It has C++, Python, Java and MATLAB interfaces and supports Windows, 

Linux, Android and Mac OS. OpenCV leans mostly towards real-time vision 

applications and takes advantage of MMX and SSE instructions when available. 

A full-featured CUDAand OpenCL interfaces are being actively developed right 

now. There are over 500 algorithms and about 10 times as many functions that 

compose or support those algorithms. OpenCV is written natively in C++ and has 

a templated interface that works seamlessly with STL containers. 

OpenCV's application areas include : 

 2D and 3D feature toolkits 

 Egomotion estimation 

 Facial recognition system 

 Gesture recognition 

 Human–computer interaction (HCI) 

 Mobile robotics 

 Motion understanding 

 Object identification 

 Segmentation and recognition 

 Stereopsis stereo vision: depth perception from 2 cameras 

 Structure from motion (SFM) 

 Motion tracking 

 Augmented reality 

To support some of the above areas, OpenCV includes a 

statistical machine learning library that contains : 

https://en.wikipedia.org/wiki/Egomotion
https://en.wikipedia.org/wiki/Facial_recognition_system
https://en.wikipedia.org/wiki/Gesture_recognition
https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
https://en.wikipedia.org/wiki/Mobile_robotics
https://en.wikipedia.org/w/index.php?title=Motion_understanding&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Object_identification&action=edit&redlink=1
https://en.wikipedia.org/wiki/Segmentation_(image_processing)
https://en.wikipedia.org/wiki/Stereopsis
https://en.wikipedia.org/wiki/Structure_from_motion
https://en.wikipedia.org/wiki/Video_tracking
https://en.wikipedia.org/wiki/Augmented_reality


 Boosting 

 Decision tree learning 

 Gradient boosting trees 

 Expectation-maximization algorithm 

 k-nearest neighbor algorithm 

 Naive Bayes classifier 

 Artificial neural networks 

 Random forest 

 Random forest 

 Support vector machine (SVM) 

 Deep neural networks (DNN) 

o Numpy :  
NumPy is an acronym for "Numeric Python" or "Numerical Python". It is an 

open source extension module for Python, which provides fast precompiled 

functions for mathematical and numerical routines. Furthermore, NumPy 

enriches the programming language Python with powerful data structures for 

efficient computation of multi-dimensional arrays and matrices. The 

implementation is even aiming at huge matrices and arrays. Besides that the 

module supplies a large library of high-level mathematical functions to operate 

on these matrices and arrays. 

It is the fundamental package for scientific computing with Python. It contains 

various features including these important ones: 

 A powerful N-dimensional array object 

 Sophisticated (broadcasting) functions 

 Tools for integrating C/C++ and Fortran code 

 Useful linear algebra, Fourier Transform, and random number 

capabilities. 

 

o Numpy Array : 

A numpy array is a grid of values, all of the same type, and is indexed by a 

tuple of nonnegative integers. The number of dimensions is the rank of 

the array; the shape of an array is a tuple of integers giving the size of 

the array along each dimension. 

 

o SciPy : 
SciPy (Scientific Python) is often mentioned in the same breath with NumPy. 

SciPy extends the capabilities of NumPy with further useful functions for 

minimization, regression, Fourier-transformation and many others. 

NumPy is based on two earlier Python modules dealing with arrays. One of these 

is Numeric. Numeric is like NumPy a Python module for high-performance, 

numeric computing, but it is obsolete nowadays. Another predecessor of NumPy 

is Numarray, which is a complete rewrite of Numeric but is deprecated as well. 

NumPy is a merger of those two, i.e. it is build on the code of Numeric and the 

features of Numarray. 
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o The Python Alternative To Matlab : 
Python in combination with Numpy, Scipy and Matplotlib can be used as a 

replacement for MATLAB. The combination of NumPy, SciPy and Matplotlib is 

a free (meaning both "free" as in "free beer" and "free" as in "freedom") 

alternative to MATLAB. Even though MATLAB has a huge number of 

additional toolboxes available, NumPy has the advantage that Python is a more 

modern and complete programming language and - as we have said already 

before - is open source. SciPy adds even more MATLAB-like functionalities to 

Python. Python is rounded out in the direction of MATLAB with the module 

Matplotlib, which provides MATLAB-like plotting functionality. 

 

5.3. 

o Keras : 
Keras is a high-level neural networks API, written in Python and capable of 

running on top of TensorFlow, CNTK, or Theano. It was developed with a focus 

on enabling fast experimentation. 

Keras contains numerous implementations of commonly used neural network 

building blocks suchas layers, objectives, activation functions, optimizers, and a 

host of tools to make working with image and text data easier. The code is hosted 

on GitHub, and community support forums include the GitHub issues page, and 

a Slack channel. 

Keras allows users to productize deep models on smartphones 

(iOS and Android), on the web, or on the Java Virtual Machine. 

It also allows use of distributed training of deep learning models on clusters 

of Graphics Processing Units (GPU). 

o TensorFlow : 

TensorFlow is a Python library for fast numerical computing created and released 

by Google. It is a foundation library that can be used to create Deep Learning 

models directly or by using wrapper libraries that simplify the process built on 

top ofTensorFlow. 

o Guiding Principles : 

 
 User Friendliness : Keras is an API designed for human beings, not 

machines. It puts user experience front and center. Keras follows best 

practices for reducing cognitive load: it offers consistent & simple APIs, it 



minimizes the number of user actions required for common use cases, and it 

provides clear and actionable feedback upon user error. 

 Modularity : A model is understood as a sequence or a graph of 

standalone, fully-configurable modules that can be plugged together with as 

little restrictions as possible. In particular, neural layers, cost functions, 

optimizers, initialization schemes, activation functions, regularization 

schemes are all standalone modules that you can combine to create new 

models. 

 Easy Extensibility : New modules are simple to add (as new classes and 

functions), and existing modules provide ample examples. To be able to 

easily create new modules allows for total expressiveness, making Keras 

suitable for advanced research. 

 Work with Python : No separate models configuration files in a 

declarative format. Models are described in Python code, which is compact, 

easier to debug, and allows for ease of extensibility. 

 

o SYS : 
System-specific parameters and functions. This module provides access to some 

variables used or maintained by the interpreter and to functions that interact 

strongly with the interpreter. The sys module provides information about 

constants, functions and methods of the Python interpreter. dir(system) gives a 

summary of the available constants, functions and methods. Another possibility 

is the help() function. Using help(sys) provides valuable detail information.  

 

o Sigmoid Function : 
The sigmoid function in a neural network will generate the end point (activation) 

of inputs multiplied by their weights. For example, let‟s say we had two columns 

(features) of input data and one hidden node (neuron) in our neural network. 

Each feature would be multiplied by its corresponding weight value and then 

added together and passed through the sigmoid (just like a logistic regression). 

To take that simple example and turn it into a neural network we just add more 

hidden units. In addition to adding more hidden units, we add a path from every 

input feature to each of those hidden units where it is multiplied by its 

corresponding weight. Each hidden unit takes the sum of its inputs weights and 

passes that through the sigmoid resulting in that unit's activation. 

 Properties of Sigmoid Function : 

 The sigmoid function returns a real-valued output. 

 sigmoid function take any range real number and returns the output value 

which falls in the range of 0 to 1. 

The first derivative of the sigmoid function will be non-negative or non-

positive. 

 Non-Negative: If a number is greater than or equal to zero. 

 Non-Positive: If a number is less than or equal to Zero. 

 

o Softmax Function : 
 Softmax function calculates the probabilities distribution of the event over „n‟ 

different events. In general way of saying, this function will calculate the 

probabilities of each target class over all possible target classes. Later the 



calculated probabilities will be helpful for determining the target class for the 

given inputs. 

 The main advantage of using Softmax is the output probabilities range. The 

range will 0 to 1, and the sum of all the probabilities will be equal to one. If 

the softmax function used for multi-classification model it returns the 

probabilities of each class and the target class will have the high probability. 

 The formula computes the exponential (e-power) of the given input value and 

the sum of exponential values of all the values in the inputs. Then the ratio of 

the exponential of the input value and the sum of exponential values is the 

output of the softmax function. 

 Properties Of Softmax Function : 

 The calculated probabilities will be in the range of 0 to 1. 

 The sum of all probabilities is equal to 0. 

  

 Face Registration : 

 
o Haar Features : 

Haar feature is similar to Karnals, which is generally used to detect edge. All 

human faces share some similar features, like eye region is darker than upper 

check region  , nose region is brighter than eye region. By this match able 

features, their location and size will help us to detect a face.  

 

 
5.4. 

 
Here are some Haar feature , using those we can say there is a face or not. 

Haar feature signifies that black region is represented by +1 and white region 

is represented by -1 . 

It uses a 24X24 window for an image. Each feature is a single value obtained 

by subtracting sum of pixels under white rectangle from sum of pixels under 

black rectangle.Now all possible sizes and locations of each kernel is used to 

calculate plenty of features.For each feature calculation, we need to find sum 

of pixels under white and black rectangles. For 24X24 window, there will be 

160000+ Haar features, which is a huge number. To solve this, they 

introduced the integral images. It simplifies calculation of sumof pixels, how 

large may be the number of pixels, to an operation involving just four pixels. 

 

 



o Integral Images : 
The basic idea of integral image is that to calculate the area. So, we do not need 

to sum up all the pixel values rather than we have to use the corner values and 

then a simple calculation is to be done.  

The integral image at location x , y contains the sum of the pixels above and to 

the left of x , y, inclusive :  

 
For this input image the integrated image will be calculated by summing up all 

the above and left pixels. Like – 

 
The sum of the pixels within rectangle D can be computed with four array 

references: 

 The value of the integral image at location 1 is the sum of the pixels in 

rectangle A. The value at location 2 is A + B, at location 3 is A + C, 

and at location 4 is A + B + C + D.  

 The sum within D can be computed as 4 + 1 − (2 + 3). 

 
This is easier than the previous one. This is the advantage of converting an 

image into an integrated image.  

 

o Adaboost :  
Adaboost is used to eliminate the redundant feature of Haar. A very small 

number of these features can be combined to form an effective classifier. The 

main challenge is to find these features. Avariant of AdaBoost is used both to 

select the features and to train the classifier. 

 
5.5. 



The second feature is used for detecting the nose bridge, but it is irrelevant for 

upper lips as upper lips has more or less constant feature. So, we can easily 

eliminate it. Using adaboost we can determine which are relevant out of 

160000+ feature. After finding all the features, a weighted value is added to it 

which is which is used to evaluate a given window is a face or not.  

F(x) = a1f1(x) + a2f2(x) + a3f3(x) + a4f4(x) + a5f5(x) + …. 

F(x) is strong classifier and f(x) is weak classifier.  

Weak classifier always provide binary value i.e. 0 and 1. If the feature is 

present the value will be 1, otherwise value will be 0. Generally 2500 

classifiers are used to make a strong classifier. Here selected features are said 

to be okay if it perform better than the random guessing i.e. it has to detect 

more than half of cases.  

 

o Cascading : 
Suppose, we have an input image of 640X480 resolution. Then we need to move 

24X24 window through out the image and for each window 2500 features are to 

be evaluated. Taking all 2500 features in a linear way it checks weather there is 

any threshold or not and then decide it is a face or not. 

But instead of using all 2500 features for 24X24 times we will use cascade. Out 

of 2500 features , 1
st
 10 features are classified in one classifier, next 20-30 

featutes are in next classifier, then next 100 in another classifier. So, like this we 

will increase the complexity.  

The advantage is we can eliminate non face from 1
st
 step instead of going 

through all 2500 features for 24X24 window.  

Suppose we have an image. If the image pass through 1
st
 stage where 10 

classifiers are stored, it may be a face. Then the image will go for 2
nd

 stage 

checking. It the image does not pass the 1
st
 stage, we can easily eliminate that.  

 

 

5.6. 

 
Cascading is smaller, most efficient classifier . It is very easy to non face areas 

using cascading.  

 

 Haar Cascade Classifier in OpenCv : 
The algorithm needs a lot of positive images (images of faces) and negative images 

(images without faces) to train the classifier. Then we need to extract features from it. 

For this, haar features shown in below image are used. They are just like our 



convolutional kernel. Each feature is a single value obtained by subtracting sum of 

pixels under white rectangle from sum of pixels under black rectangle. 

Now all possible sizes and locations of each kernel is used to calculate plenty of 

features. (Just imagine how much computation it needs? Even a 24x24 window results 

over 160000 features). For each feature calculation, we need to find sum of pixels 

under white and black rectangles. To solve this, they introduced the integral images. It 

simplifies calculation of sum of pixels, how large may be the number of pixels, to an 

operation involving just four pixels. Nice, isn‟t it? It makes things super-fast. 

But among all these features we calculated, most of them are irrelevant. For example, 

consider the image below. Top row shows two good features. The first feature 

selected seems to focus on the property that the region of the eyes is often darker than 

the region of the nose and cheeks. The second feature selected relies on the property 

that the eyes are darker than the bridge of the nose. But the same windows applying 

on cheeks or any other place is irrelevant. So how do we select the best features out of 

160000+ features? It is achieved by Adaboost. 

For this, we apply each and every feature on all the training images. For each feature, 

it finds the best threshold which will classify the faces to positive and negative. But 

obviously, there will be errors or misclassifications. We select the features with 

minimum error rate, which means they are the features that best classifies the face and 

non-face images. (The process is not as simple as this. Each image is given an equal 

weight in the beginning. After each classification, weights of misclassified images are 

increased. Then again same process is done. New error rates are calculated. Also new 

weights. The process is continued until required accuracy or error rate is achieved or 

required number of features are found). 

Final classifier is a weighted sum of these weak classifiers. It is called weak because it 

alone can‟t classify the image, but together with others forms a strong classifier. The 

paper says even 200 features provide detection with 95% accuracy. Their final setup 

had around 6000 features. (Imagine a reduction from 160000+ features to 6000 

features. That is a big gain). 

So now you take an image. Take each 24x24 window. Apply 6000 features to it. 

Check if it is face or not. Wow.. Wow.. Isn‟t it a little inefficient and time consuming? 

Yes, it is. Authors have a good solution for that. 

In an image, most of the image region is non-face region. So it is a better idea to have 

a simple method to check if a window is not a face region. If it is not, discard it in a 

single shot. Don‟t process it again. Instead focus on region where there can be a face. 

This way, we can find more time to check a possible face region. 



For this they introduced the concept of Cascade of Classifiers. Instead of applying all 

the 6000 features on a window, group the features into different stages of classifiers 

and apply one-by-one. (Normally first few stages will contain very less number of 

features). If a window fails the first stage, discard it. We don‟t consider remaining 

features on it. If it passes, apply the second stage of features and continue the process. 

The window which passes all stages is a face region. How is the plan !!! 

Authors‟ detector had 6000+ features with 38 stages with 1, 10, 25, 25 and 50 features 

in first five stages. (Two features in the above image is actually obtained as the best 

two features from Adaboost). According to authors, on an average, 10 features out of 

6000+ are evaluated per sub-window. 

So this is a simple intuitive explanation of how Viola-Jones face detection works. 

Read paper for more details or check out the references in Additional Resources 

section. 

 Artificial Neural Networks  : 

The idea of ANNs is based on the belief that working of human brain by making the 

right connections, can be imitated using silicon and wires as 

living neurons and dendrites. 

The human brain is composed of 86 billion nerve cells called neurons. They are 

connected to other thousand cells by Axons. Stimuli from external environment or 

inputs from sensory organs are accepted by dendrites. These inputs create electric 

impulses, which quickly travel through the neural network. A neuron can then send 

the message to other neuron to handle the issue or does not send it forward. 

 

 

5.7. 

 

ANNs are composed of multiple nodes, which imitate biological neurons of human 

brain. The neurons are connected by links and they interact with each other. The 

nodes can take input data and perform simple operations on the data. The result of 

these operations is passed to other neurons. The output at each node is called 



its activation or node value. Each link is associated with weight. ANNs are capable 

of learning, which takes place by altering weight values. 

 

 Deep Convolutional Neural Networks (DCNN) : 
Convolutional Neural Networks are very similar to ordinary Neural Networks from 

the previous chapter: they are made up of neurons that have learnable weights and 

biases. Each neuron receives some inputs, performs a dot product and optionally 

follows it with a non-linearity.  

o Overview of DCNN architecture : 
DCNNs are feedforward networks in that information flow takes place in one 

direction only, from their inputs to their outputs. Just as artificial neural 

networks (ANN) are biologically inspired, so are CNNs. The visual cortex in 

the brain, which consists of alternating layers of simple and complex cells 

(Hubel & Wiesel, 1959, 1962), motivates their architecture. CNN architectures 

come in several variations; however, in general, they consist of convolutional 

and pooling (or subsampling) layers, which are grouped into modules. Either 

one or more fully connected layers, as in a standard feedforward neural 

network, follow these modules. Modules are often stacked on top of each other 

to form a deep model. It illustrates typical CNN architecture for a toy image 

classification task. An image is input directly to the network, and this is 

followed by several stages of convolution and pooling. Thereafter, 

representations from these operations feed one or more fully connected layers. 

Finally, the last fully connected layer outputs the class label. Despite this 

being the most popular base architecture found in the literature, several 

architecture changes have been proposed in recent years with the objective of 

improving image classification accuracy or reducing computation costs. 

Although for the remainder of this section, we merely fleetingly introduce 

standard CNN architecture. 

 
5.8. 

o Convolutional Layers : 
The convolutional layers serve as feature extractors, and thus they learn the 

feature representations of their input images. The neurons in the convolutional 

layers are arranged into feature maps. Each neuron in a feature map has a 

receptive field, which is connected to a neighborhood of neurons in the 

previous layer via a set of trainable weights, sometimes referred to as a filter 

bank. Inputs are convolved with the learned weights in order to compute a new 

feature map, and the convolved results are sent through a nonlinear activation 

function. All neurons within a feature map have weights that are constrained 



to be equal; however, different feature maps within the same convolutional 

layer have different weights so that several features can be extracted at each 

location. 

 

o Pooling Layers : 
The purpose of the pooling layers is to reduce the spatial resolution of the 

feature maps and thus achieve spatial invariance to input distortions and 

translations. Initially, it was common practice to use average pooling 

aggregation layers to propagate the average of all the input values, of a small 

neighborhood of an image to the next layer. However, in more recent models, , 

max pooling aggregation layers propagate the maximum value within a 

receptive field to the next layer.  

 

 

o Fully Connected Layers : 
Several convolutional and pooling layers are usually stacked on top of each 

other to extract more abstract feature representations in moving through the 

network. The fully connected layers that follow these layers interpret these 

feature representations and perform the function of high-level reasoning. . For 

classification problems, it is standard to use the softmax operator on top of a 

DCNN. While early success was enjoyed by using radial basis functions 

(RBFs), as the classifier on top of the convolutional towers found that 

replacing the softmax operator with a support vector machine (SVM) leads to 

improved classification accuracy.  

 

o Training :  
CNNs and ANN in general use learning algorithms to adjust their free 

parameters in order to attain the desired network output. The most common 

algorithm used for this purpose is backpropagation. Backpropagation 

computes the gradient of an objective function to determine how to adjust a 

network‟s parameters in order to minimize errors that affect performance. A 

commonly experienced problem with training CNNs, and in particular 

DCNNs, is overfitting, which is poor performance on a held-out test set after 

the network is trained on a small or even large training set. This affects the 

model‟s ability to generalize on unseen data and is a major challenge for 

DCNNs that can be assuaged by regularization. 

 

 

5.9. 



10. IMPLEMENTATION OF PROBLEM : 

 The Database : 
The dataset we used for training the model is from a Kaggle Facial Expression 

Recognition Challenge a few years back (FER2013). It comprises a total of 35887 

pre-cropped, 48-by-48-pixel grayscale images of faces each labeled with one of the 

7 emotion classes: anger, disgust, fear, happiness, sadness, surprise, and neutral. 

 

 
6.1. 

As we were exploring the dataset, we discovered an imbalance of the “disgust” class 

compared to many samples of other classes. We decided to merge disgust into anger given 

that they both represent similar sentiment. To prevent data leakage, We built a data 

generator fer2013datagen.py that can easily separate training and hold-out set to different 

files. We used 28709 labeled faces as the training set and held out the remaining two test sets 

(3589/set) for after-training validation. The resulting is a 6-class, balanced dataset, that 

contains angry, fear, happy, sad, surprise, and neutral. Now we‟re ready to train. 

 

6.2. 

 The Model : 

Deep learning is a popular technique used in computer vision. We chose 

Convolutional Neural Network (CNN) layers as building blocks to create our model 

architecture. CNNs are known to imitate how the human brain works when analyzing 

visuals. We have used a picture of Mr. Bean as an example to explain how images are 

fed into the model, because who doesn’t love Mr. Bean? 

A typical architecture of a convolutional neural network  contain an input layer, some 

convolutional layers, some dense layers (aka. fully-connected layers), and an output 



layer . These are linearly stacked layers ordered in sequence. In Keras, the model is 

created as Sequential() and more layers are added to build architecture. 

 

 
6.3. 

 

o Input Layer : 

The input layer has pre-determined, fixed dimensions, so the image must 

be pre-processed before it can be fed into the layer. We used OpenCV, a 

computer vision library, for face detection in the image. The haar-

cascade_frontalface_default.xml in OpenCV contains pre-trained filters and 

uses Adaboost to quickly find and crop the face. 

The cropped face is then converted into grayscale using cv2.cvtColor and 

resized to 48-by-48 pixels with cv2.resize. This step greatly reduces the 

dimensions compared to the original RGB format with three color dimensions 

(3, 48, 48). The pipeline ensures every image can be fed into the input layer as 

a (1, 48, 48) numpy array. 

o Convolutional Layers : 

The numpy array gets passed into the Convolution2D layer where we specify 

the number of filters as one of the hyperparameters. The set of filters(aka. 

kernel) are unique with randomly generated weights. Each filter, (3, 3) 

receptive field, slides across the original image with shared weights to create 

a feature map.Convolution generates feature maps that represent how pixel 

values are enhanced, for example, edge and pattern detection. A feature map is 

created by applying filter 1 across the entire image. Other filters are applied 

one after another creating a set of feature maps. 

 

6.4. 



Pooling is a dimension reduction technique usually applied after one or 

several convolutional layers. It is an important step when building CNNs as 

adding more convolutional layers can greatly affect computational time. We 

used a popular pooling method called MaxPooling2D that uses (2, 2) windows 

across the feature map only keeping the maximum pixel value. The pooled 

pixels form an image with dimentions reduced by 4. 

o Dense Layers : 

The dense layer (aka fully connected layers), is inspired by the way neurons 

transmit signals through the brain. It takes a large number of input features and 

transform features through layers connected with trainable weights. 

 

6.5. 

These weights are trained by forward propagation of training data then 

backward propagation of its errors. Back propagation starts from evaluating 

the difference between prediction and true value, and back calculates the 

weight adjustment needed to every layer before. We can control the training 

speed and the complexity of the architecture by tuning the hyper-parameters, 

such as learning rate and network density. As we feed in more data, the 

network is able to gradually make adjustments until errors are 

minimized.Essentially, the more layers/nodes we add to the network the better 

it can pick up signals. As good as it may sound, the model also becomes 

increasingly prone to overfitting the training data. One method to prevent 

overfitting and generalize on unseen data is to apply dropout. Dropout 

randomly selects a portion (usually less than 50%) of nodes to set their 

weights to zero during training. This method can effectively control the 

model's sensitivity to noise during training while maintaining the necessary 

complexity of the architecture. 

o Output Layer : 

Instead of using sigmoid activation function, we used softmax at the output 

layer. This output presents itself as a probability for each emotion 

class.Therefore, the model is able to show the detail probability composition 

of the emotions in the face. As later on, you will see that it is not efficient to 

classify human facial expression as only a single emotion. Our expressions are 

usually much complex and contain a mix of emotions that could be used to 

accurately describe a particular expression. 



Deep Learning we built a simple CNN with an input, three convolution layers, 

one dense layer, and an output layer to start with. As it turned out, the simple 

model performed poorly. The low accuracy of 0.1500 showed that it was 

merely random guessing one of the six emotions. The simple net architecture 

failed to pick up the subtle details in facial expressions. This could only mean 

one thing... 

This is where deep learning comes in. Given the pattern complexity of facial expressions, it is 

necessary to build with a deeper architecture in order to identify subtle signals. So we fiddled 

combinations of three components to increase model complexity: 

Models with various combinations were trained and evaluated using GPU 

computing g2.2xlarge on Amazon Web Services (AWS). This greatly reduced training time 

and increased efficiency in tuning the model. In the end, our final net architecture was 9 

layers deep in convolution with one max-pooling after every three convolution layers as seen 

below. 

 

6.6. 

 Model Validation : 

Performance As it turns out, the final CNN had a validation accuracy of 58%. This 

actually makes a lot of sense. Because our expressions usually consist a combination 

of emotions, and only using one label to represent an expression can be hard. In this 

case, when the model predicts incorrectly, the correct label is often the second 

most likely emotion as seen in figure below. 

 



 

 

 

6.7. 



 

6.8. 

The confusion matrix gives the counts of emotion predictions and some insights to the 

performance of the multi-class classification model : 

o The model performs really well on classifying positive emotions resulting in 

relatively high precision scores for happy and surprised. Happy has a 

precision of 76.7% which could be explained by having the most examples 

(~7000) in the training set. Interestingly, surprise has a precision of 69.3% 

having the least examples in the training set. There must be very strong signals 

in the surprise expressions. 

o Model performance seems weaker across negative emotions on average. In 

particularly, the emotion sad has a low precision of only 39.7%. The model 

frequently misclassified angry, fear and neutral as sad. In addition, it is most 

confused when predicting sad and neutral faces because these two emotions 

are probably the least expressive (excluding crying faces). 

o Frequency of prediction that misclassified by less than 3 ranks. 

 

6.9. 

Computer Vision As a result, the feature maps become increasingly abstract down the 

pipeline when more pooling layers are added. This gives an idea of what the machine sees in 

feature maps after 2nd and 3rd max-pooling. 
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6.12. 



11. RESULT : 
Dataset Trained Succesfully 

 

 

Json Model Created Succesfully 

 

 



Accuracy Check Of The Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Output Sample 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

[[0.0779406    0.18848301    0.04663404    0.48889568    0.04269835    

0.15534832]] 

7.1. 7.2. 

7.3. 



Output Sample 2 

 

  

 

 

 

  

[[0.03624988    0.10619672    0.2371441    0.38174957    0.0040082    

0.23465155]] 

7.4. 

7.5. 

7.6. 



Output Sample 3 

 

 

 

  

  

 

  

[[0.13885646    0.1613157    0.051758    0.54035807    0.011132    

0.09657982]] 

7.7. 7.8. 

7.9. 



12. CONCLUSION : 

 

In this case, when the model predicts incorrectly, the correct label is often the second 

most likely emotion. 

The facial expression recognition system presented in this research work contributes a 

resilient face recognition model based on the mapping of behavioral characteristics with the 

physiological biometric characteristics. The physiological characteristics of the human face 

with relevance to various expressions such as happiness, sadness, fear, anger, surprise and 

disgust are associated with geometrical structures which restored as base matching template 

for the recognition system. 

The behavioral aspect of this system relates the attitude behind different expressions as 

property base. The property bases are alienated as exposed and hidden category in genetic 

algorithmic genes. The gene training set evaluates the expressional uniqueness of individual 

faces and provide a resilient expressional recognition model in the field of biometric security. 

The design of a novel asymmetric cryptosystem based on biometrics having features like 

hierarchical group security eliminates the use of passwords and smart cards as opposed to 

earlier cryptosystems. It requires a special hardware support like all other biometrics system. 

This research work promises a new direction of research in the field of asymmetric biometric 

cryptosystems which is highly desirable in order to get rid of passwords and smart cards 

completely. Experimental analysis and study show that the hierarchical security structures are 

effective in geometric shape identification for physiological traits. 

 

  



13. FUTURE SCOPE : 

 

It is important to note that there is no specific formula to build a neural network that would 

guarantee to work well. Different problems would require different network architecture and 

a lot of trail and errors to produce desirable validation accuracy. This is the reason why 

neural nets are often perceived as "black box algorithms.". 

In this project we got an accuracy of almost 70% which is not bad at all  comparing all the 

previous models. But we need to improve in specific areas like- 

 number and configuration of convolutional layers 

 number and configuration of dense layers 

 dropout percentage in dense layers 

But due to lack of highly configured system we could not go deeper into dense neural 

network as the system gets very slow and we will try to improve in these areas in future. 

We would also like to train more databases into the system to make the model more and more 

accurate but again resources becomes a hindrance in the path and we also need to improve in 

several areas in future to resolve the errors and improve the accuracy. 

Having examined techniques to cope with expression variation, in future it may be 

investigated in more depth about the face classification problem and optimal fusion of color 

and depth information. Further study can be laid down in the direction of allele of gene 

matching to the geometric factors of the facial expressions. The genetic property evolution 

framework for facial expressional system can be studied to suit the requirement of different 

security models such as criminal detection, governmental confidential security breaches etc. 
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15. APPENDIX : 

 

code1.py 

Created on Sat Apr 21 12:39:40 2018 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

""" 

@author: angana 

""" 

#data generation 

fromkeras.utils.np_utils import to_categorical 

import pandas as pd 

importnumpy as np 

import random 

import sys 

# fer2013 dataset: 

# Training       28709 

# PrivateTest     3589 

# PublicTest      3589 

# emotion labels from FER2013: 

emotion = {'Angry': 0, 'Disgust': 1, 'Fear': 2, 'Happy': 3, 

           'Sad': 4, 'Surprise': 5, 'Neutral': 6} 

emo     = ['Angry', 'Fear', 'Happy', 

           'Sad', 'Surprise', 'Neutral'] 

def reconstruct(pix_str, size=(48,48)): 

pix_arr = [] 

for pix in pix_str.split(): 

pix_arr.append(int(pix)) 

pix_arr = np.asarray(pix_arr) 

returnpix_arr.reshape(size) 

defemotion_count(y_train, classes, verbose=True): 



emo_classcount = {} 

print ('Disgust classified as Angry') 

y_train.loc[y_train == 1] = 0 

classes.remove('Disgust') 

fornew_num, _class in enumerate(classes): 

y_train.loc[(y_train == emotion[_class])] = new_num 

class_count = sum(y_train == (new_num)) 

if verbose: 

print ('{}: {} with {} samples'.format(new_num, _class, class_count)) 

emo_classcount[_class] = (new_num, class_count) 

returny_train.values, emo_classcount 

 

defload_data(sample_split=0.3, usage='Training', to_cat=True, verbose=True, 

classes=['Angry','Happy'], filepath='fer2013.csv'): 

df = pd.read_csv(filepath) 

    # printdf.tail() 

    # printdf.Usage.value_counts() 

df = df[df.Usage == usage] 

frames = [] 

classes.append('Disgust') 

for _class in classes: 

class_df = df[df['emotion'] == emotion[_class]] 

frames.append(class_df) 

data = pd.concat(frames, axis=0) 

rows = random.sample(list(data.index), int(len(data)*sample_split)) 

data = data.ix[rows] 

print ('{} set for {}: {}'.format(usage, classes, data.shape)) 

data['pixels'] = data.pixels.apply(lambda x: reconstruct(x)) 

    x = np.array([mat for mat in data.pixels]) # (n_samples, img_width, img_height) 

X_train = x.reshape(-1, 1, x.shape[1], x.shape[2]) 

y_train, new_dict = emotion_count(data.emotion, classes, verbose) 

print (new_dict) 



ifto_cat: 

y_train = to_categorical(y_train) 

returnX_train, y_train, new_dict 

defsave_data(X_train, y_train, fname='', folder=''): 

np.save(folder + 'X_train' + fname, X_train) 

np.save(folder + 'y_train' + fname, y_train) 

 

if __name__ == '__main__': 

    # makes the numpy arrays ready to use: 

print ('Making moves...') 

emo = ['Angry', 'Fear', 'Happy', 

           'Sad', 'Surprise', 'Neutral'] 

    ''' 

X_train, y_train, emo_dict = load_data(sample_split=1.0, 

classes=emo, 

usage='PrivateTest', 

verbose=True) 

    ''' 

X_train, y_train, emo_dict = load_data(sample_split=1.0, 

classes=emo, 

usage='Training', 

verbose=True) 

print ('Saving...') 

save_data(X_train, y_train, fname='_train') 

print (X_train.shape) 

print (y_train.shape) 

print ('Done!') 

 

code2.py 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

""" 



Created on Sat Apr 21 12:53:59 2018 

@author: angana 

""" 

import sys, os 

import cv2 

importnumpy as np 

def preprocessing(img, size=(48, 48)): 

img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) 

img = cv2.resize(img, size).astype(np.float32) 

    #img = img.transpose((2, 0, 1)) 

    # img = np.expand_dims(img, axis=0) 

returnimg 

defextract_features(path): 

    X, y = [], [] 

label = 0 

fordirnames in os.listdir(path): 

        # print(dirnames) 

sub_path = os.path.join(path, dirnames) 

        # print(sub_path) 

for filename in os.listdir(sub_path): 

            # print (filename) 

file_path = os.path.join(sub_path, filename) 

img = cv2.imread(file_path) 

img = preprocessing(img) 

X.append(img) 

class_label = [0, 0, 0, 0, 0, 0, 0] 

class_label[label] = 1 

y.append(class_label) 

label += 1 

 X = np.asarray(X) 

    y = np.asarray(y) 

return X, y 



if __name__ == "__main__" : 

    X, y = extract_features(sys.argv[1]) 

print(X, y) 

print(type(X), type(X[0])) 

print(X[212]) 

print(len(X)) 

 

code3.py 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

""" 

Created on Sat Apr 21 13:04:13 2018 

@author: angana 

""" 

importargparse 

import cv2 

importnumpy as np 

import code2 as fu 

importmyVGG 

fromkeras.callbacks import LambdaCallback, EarlyStopping 

parser = argparse.ArgumentParser(description=("Model training process.")) 

# parser.add_argument('data_path', help=("The path of training data set")) 

parser.add_argument('--test', help=("Input a single image to check if the model works well.")) 

args = parser.parse_args() 

def main(): 

model = myVGG.VGG_16() 

ifargs.test is not None: 

print ("Test mode") 

img = cv2.imread(args.test) 

img = fu.preprocessing(img) 

img = np.expand_dims(img, axis=0) 

        y = np.expand_dims(np.asarray([0]), axis=0) 



batch_size = 1024 

model.fit(img, y, nb_epoch=400, \ 

batch_size=batch_size, \ 

validation_split=0.2, \ 

shuffle=True, verbose=0) 

return 

#input_path = args.data_path 

    #print("training data path : " + input_path) 

    #X_train, y_train = fu.extract_features(input_path) 

X_fname = 'X_train_train.npy' 

y_fname = 'y_train_train.npy' 

X_train = np.load(X_fname) 

y_train = np.load(y_fname) 

print(X_train.shape) 

print(y_train.shape)  

print("Training started") 

callbacks = [] 

earlystop_callback = EarlyStopping(monitor='val_loss', patience=5, verbose=0) 

batch_print_callback = LambdaCallback(on_batch_begin=lambda batch, logs: print('batch 

',batch)) 

epoch_print_callback = LambdaCallback(on_epoch_end=lambda epoch, logs: print("epoch:", 

epoch)) 

callbacks.append(earlystop_callback) 

callbacks.append(batch_print_callback) 

callbacks.append(epoch_print_callback) 

batch_size = 1024 

model.fit(X_train, y_train, nb_epoch=400, \ 

batch_size=batch_size, \ 

validation_split=0.2, \ 

shuffle=True, verbose=0, \ 

callbacks=callbacks) 

model.save_weights('my_model_weights.h5') 

scores = model.evaluate(X_train, y_train, verbose=0) 



print ("Train loss : %.3f" % scores[0]) 

print ("Train accuracy : %.3f" % scores[1]) 

print ("Training finished") 

if __name__ == "__main__": 

main() 

 

myVGG.py 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

""" 

Created on Sat Apr 21 13:42:16 2018 

@author: angana 

""" importos, sys 

module_path = os.path.abspath(os.path.join('.')) 

sys.path.append(module_path) 

fromkeras.models import Sequential 

fromkeras.layers.core import Flatten, Dense, Dropout 

fromkeras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D 

fromkeras.optimizers import SGD 

import cv2, numpy as np 

fromkeras import backend as K 

K.set_image_dim_ordering('th') 

def VGG_16(weights_path=None, shape=(48, 48)): 

model = Sequential() 

model.add(ZeroPadding2D((1,1), input_shape=(1, 48, 48))) 

model.add(Convolution2D(32, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(32, 3, 3, activation='relu')) 

model.add(MaxPooling2D((2,2), strides=(2,2))) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(64, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 



model.add(Convolution2D(64, 3, 3, activation='relu')) 

model.add(MaxPooling2D((2,2), strides=(2,2))) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(128, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(128, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(128, 3, 3, activation='relu')) 

model.add(MaxPooling2D((2,2), strides=(2,2))) 

'' model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(512, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(512, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(512, 3, 3, activation='relu')) 

model.add(MaxPooling2D((2,2), strides=(2,2))) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(512, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(512, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(512, 3, 3, activation='relu')) 

model.add(MaxPooling2D((2,2), strides=(2,2))) 

'''model.add(Flatten()) 

model.add(Dense(1024, activation='relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(512, activation='relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(6, activation='softmax')) 

print ("Create model successfully") 

ifweights_path: 

model.load_weights(weights_path) 



model.compile(optimizer='adam', loss='categorical_crossentropy', \ 

metrics=['accuracy']) 

model_json = model.to_json() 

with open("model.json", "w") as json_file: 

json_file.write(model_json) 

return model 

VGG_16() 

 

evaluate_model.py 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

""" 

Created on Sat Apr 21 13:42:16 2018 

 

@author: angana 

""" 

importos, sys 

module_path = os.path.abspath(os.path.join('.')) 

sys.path.append(module_path) 

fromkeras.models import Sequential 

fromkeras.layers.core import Flatten, Dense, Dropout 

fromkeras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D 

fromkeras.optimizers import SGD 

import cv2, numpy as np 

fromkeras import backend as K 

K.set_image_dim_ordering('th') 

def VGG_16(weights_path=None, shape=(48, 48)): 

model = Sequential() 

model.add(ZeroPadding2D((1,1), input_shape=(1, 48, 48))) 

model.add(Convolution2D(32, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(32, 3, 3, activation='relu')) 



model.add(MaxPooling2D((2,2), strides=(2,2))) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(64, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(64, 3, 3, activation='relu')) 

model.add(MaxPooling2D((2,2), strides=(2,2))) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(128, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(128, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(128, 3, 3, activation='relu')) 

model.add(MaxPooling2D((2,2), strides=(2,2))) 

''' model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(512, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(512, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(512, 3, 3, activation='relu')) 

model.add(MaxPooling2D((2,2), strides=(2,2))) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(512, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(512, 3, 3, activation='relu')) 

model.add(ZeroPadding2D((1,1))) 

model.add(Convolution2D(512, 3, 3, activation='relu')) 

model.add(MaxPooling2D((2,2), strides=(2,2))) 

    '' model.add(Flatten()) 

model.add(Dense(1024, activation='relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(512, activation='relu')) 

model.add(Dropout(0.5)) 



model.add(Dense(6, activation='softmax')) 

print ("Create model successfully") 

ifweights_path: 

model.load_weights(weights_path) 

model.compile(optimizer='adam', loss='categorical_crossentropy', \ 

metrics=['accuracy']) 

model_json = model.to_json() 

with open("model.json", "w") as json_file: 

json_file.write(model_json) 

return model 

VGG_16() 

 

predict_from_img.py 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

""" 

Created on Sun Apr 22 21:20:10 2018 

@author: angana 

""" 

fromkeras.models import model_from_json 

from flask import Blueprint, request, jsonify 

importjson 

# load json and create model arch 

json_file = open('model_1.json','r') 

loaded_model_json = json_file.read() 

json_file.close() 

model = model_from_json(loaded_model_json) 

# load weights into new model 

model.load_weights('model_1.h5') 

import cv2 

import base64 

def base64_encode_image(image_rgb): 



image_bgr = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR) 

ret, image_buf = cv2.imencode('.jpg', image_bgr, (cv2.IMWRITE_JPEG_QUALITY, 40)) 

image_str = base64.b64encode(image_buf) 

return 'data:image/jpeg;base64,' + image_str 

defpredict_emotion(face_image_gray): # a single cropped face 

resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA) 

    # cv2.imwrite(str(index)+'.png', resized_img) 

image = resized_img.reshape(1, 1, 48, 48) 

list_of_list = model.predict(image, batch_size=1, verbose=1) 

angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst] 

return  angry, fear, happy, sad, surprise, neutral 

fromscipy import misc 

importnumpy as np 

from PIL import Image 

image = misc.imread('resized_image.png') 

Image.fromarray(image) 

image=image[:,:,0] 

image=image.reshape(1,1,48,48) 

score=model.predict(image) 

print(score) 

from PIL import Image 

img = Image.open('me.jpg').convert('L') 

baseheight = 48 

hpercent = (baseheight / float(img.size[1])) 

wsize = int((float(img.size[0]) * float(hpercent))) 

img = img.resize((wsize, baseheight), Image.ANTIALIAS) 

img.save('resized_image1.jpg') 

image = misc.imread('resized_image1.jpg') 

image=image.reshape(1,1,48,48) 

score=model.predict(image) 

print(score) 

from PIL import Image 



fromresizeimage import resizeimage 

img1 = Image.open('happy.jpg').convert('L') 

img1.save('gimage.jpg') 

with open('gimage.jpg', 'r+b') as f: 

withImage.open(f) as image: 

cover = resizeimage.resize_cover(image, [48, 48]) 

cover.save('test-image-cover.jpeg', image.format) 

img1.save('resized_image2.jpg') 

image = misc.imread('test-image-cover.jpeg') 

image=image.reshape(1,1,48,48) 

score=model.predict(image) 

print(score) 

from PIL import Image 

fromresizeimage import resizeimage 

img2 = Image.open('Bean.jpg').convert('L') 

img2.save('gimage1.jpg') 

with open('gimage1.jpg', 'r+b') as f: 

withImage.open(f) as image: 

cover = resizeimage.resize_cover(image, [48, 48]) 

cover.save('test-image-cover1.jpeg', image.format) 

img2.save('resized_image3.jpg') 

image = misc.imread('test-image-cover1.jpeg') 

image=image.reshape(1,1,48,48) 

score=model.predict(image) 

print(score) 

from PIL import Image 

fromresizeimage import resizeimage 

img3 = Image.open('hap.jpg').convert('L') 

img3.save('gimage2.jpg') 

with open('gimage2.jpg', 'r+b') as f: 

withImage.open(f) as image: 

cover = resizeimage.resize_cover(image, [48, 48]) 



cover.save('test-image-cover2.jpeg', image.format) 

img3.save('resized_image4.jpg') 

image = misc.imread('test-image-cover2.jpeg') 

image=image.reshape(1,1,48,48) 

score=model.predict(image) 

print(score) 

from PIL import Image 

fromresizeimage import resizeimage 

img4 = Image.open('sad.jpg').convert('L') 

img4.save('gimage3.jpg') 

with open('gimage3.jpg', 'r+b') as f: 

withImage.open(f) as image: 

cover = resizeimage.resize_cover(image, [48, 48]) 

cover.save('test-image-cover3.jpeg', image.format) 

img4.save('resized_image5.jpg') 

image = misc.imread('test-image-cover3.jpeg') 

image=image.reshape(1,1,48,48) 

score=model.predict(image) 

print(score) 

jpeg', image.format) 

img5.save('resized_image6.jpg')from PIL import Image 

fromresizeimage import resizeimage 

img5 = Image.open('angry.jpg').convert('L') 

img5.save('gimage4.jpg') 

with open('gimage4.jpg', 'r+b') as f: 

withImage.open(f) as image: 

cover = resizeimage.resize_cover(image, [48, 48]) 

cover.save('test-image-cover4. 

image = misc.imread('test-image-cover4.jpeg') 

image=image.reshape(1,1,48,48) 

score=model.predict(image) 

print(score) 



from PIL import Image 

fromresizeimage import resizeimage 

img6 = Image.open('angry2.jpg').convert('L') 

img6.save('gimage5.jpg') 

with open('gimage5.jpg', 'r+b') as f: 

withImage.open(f) as image: 

cover = resizeimage.resize_cover(image, [48, 48]) 

cover.save('test-image-cover5.jpeg', image.format) 

img6.save('resized_image7.jpg') 

image = misc.imread('test-image-cover5.jpeg') 

image=image.reshape(1,1,48,48) 

score=model.predict(image) 

print(score) 

 


