
PROJECT ON

VIDEO SHOT BOUNDARY DETECTION

REPORT OF MAJOR PROJECT SUBMITTED OF

PARTIAL FULFILLMENT FOR THE DEGREE OF

MASTER OF COMPUTER APPLICATION

SANTOSH CHANDRA MANDAL

Registration No.: 151170510039 OF 2015-2016

University Roll No.: 11701015038

UNDER THE SUPERVISION OF

Mr. Biswanath Chakraborty

Assistant Professor, Department of CA

RCC Institute of Information Technology

AT

RCC INSTITUTE OF INFORMATION TECHNOLOGY

Affiliated to Maulana Abul Kalam Azad University of Technology

Canal South Road, Beliaghata, Kolkata – 700015

May, 2018

RCC INSTITUTE OF INFORMATION TECHNOLOGY

KOLKATA-700015, INDIA

CERTIFICATE

The report of the project titled Video Shot Boundary Detection submitted by Mr. Santosh

Chandra Mandal (Roll No.: 11701015038 of MCA 6th Semester 2018) has been prepared

under my supervision for the partial fulfilment of the requirements for MCA degree in

Maulana Abul Kalam Azad University of Technology. The report is hereby forwarded.

 Countersigned by

Arup Kumar Bhattacharjee

HOD and Asst. Professor, Dept. of CA

RCC Institute of Information

Technology,

Kolkata-700015,India

 Biswanath Chakraborty

Asst. Professor, Dept. of CA

(INTERNAL SUPERVISION)

RCC Institute of Information Technology,

Kolkata-700015,India

ACKNOWLEDGEMENT

I express my sincere gratitude to Mr, Biswanath Chakraborty, Asst. Prof.

Department of Computer Application, RCCIIT, whose role as project guide was

invaluable for the project. I am extremely thankful for the keen interest he took

in advising me, for the books and reference materials provided for the moral

support extended to us.

This project was initially started as minor project but we extended it in this

phase with more contribution.

This entire project is jointly carried out with Mr. Biswajit Bakshi (Roll

no.:11711416003, M. Tech in Information Technology, RCCIIT) under

supervision of our Project Guide Mr. Biswanath Chakraborty Sir, .

I am also indebted to my Head of the Department (CA), Asst. Prof. Arup Kumar

Bhattacharjee sir for his unconditional help and inspiration.

 Date: _______________ Santosh Chandra Mandal

Reg. No.:151170510039 of 2015-2016
Roll No.: 11701015038

MCA 6th Semester, RCCIIT

RCC INSTITUTE OF INFORMATION TECHNOLOGY

KOLKATA-700015, INDIA

CERTIFICATE OF ACCEPTANCE

The report of the Project titled Video Shot Boundary Detection submitted by Santosh

Chandra Mandal (Roll No.: 11701015038 of MCA 6thSemester 2018) is hereby

recommended to be accepted for the partial fulfilment of the requirements for MCA degree in

Maulana Abul Kalam Azad University of Technology.

Name of the Examiner(s) Signature with Date

1.

2.

PLAGIARISM DECLARATION

1. I know that plagiarism means taking and using the ideas, writings, worksor inventions of

another as if they were one’s own. I know that plagiarismnot only includes verbatim copying,

but also the extensive use of anotherperson’s ideas without proper acknowledgement (which

includes the proper use of quotation marks). I know that plagiarism covers this sort of use of

material found in textual sources and from the Internet.

2. I acknowledge and understand that plagiarism is wrong.

3. I understand that my project must be accurately referenced. I have followed the rules and

conventions concerning referencing, citation and theuse of quotations as set out in the

Departmental Guide.

4. This assignment is my own work, or my group’s own unique group assignment. I

acknowledge that copying someone else’s assignment, or partof it, is wrong, and that

submitting identical work to others constitutes a form of plagiarism.

5. I have not allowed, nor will I in the future allow, anyone to copy my work with the

intention of passing it off as their own work.

Date: _______________ Santosh Chandra Mandal

Reg. No.:151170510039 of 2015-2016

Roll No.: 11701015038

MCA 6th Semester, RCCIIT

CONTENT

PARTICULAR
PAGE
NO.

1. Abstract 1

2. Introduction 1

3. Literature Survey
2

4. Few Keywords and Definitions 4

 4.1 What is Video? 4

 4.1.1 Hierarchical Structure of Video 5

.

4.1.1.1 Types of Shot 6

4.1.1.1.1. Hard Cut 6

4.1.1.1.2. Fade 6

4.1.1.1.3. Dissolve 7

 4.1.1.1.4. Wipe 8

 4.2. Boundary Detection 8

 4.2.1. Earlier Various Approaches to Shot Detection 8

 4.2.1.1 Pixel Comparison 8

 4.2.1.2. Histogram Comparison 9

 4.2.1.3. Statistical Differences 10

 4.2.1.4. Motion Vectors 11

 4.2.1.5 Edge Change Ratio 11

 4.3. Deep Learning 12

 4.3.1. The Definition of Deep Learning 12

 4.3.2. How Deep Learning Works 12

 4.3.3. Deep Learning and Machine Learning? 12

4.3.4. Creating New Features 13

 4.3.5. Advanced Analysis 13

 4.3.6. Deep Learning Challenges 13

 4.3.7. Continuous Input Data Management 13

 4.3.8. Ensuring Conclusion Transparency 13

 4.3.9. Resource-Demanding Technology 13

 4.3.10 What is an artificial neural network? 14

 4.3.10.1. Feedforward Neural Network 16

 4.3.10.2. Backward Propagation of Errors 19

5. Different Neural Networks 21

 5.1. Convolutional Neural Network (CNN) 21

 5.2. Recursive Neural Network (RNN) 21

 5.3. Recurrent Neural Network (RNN) 22

 5.4 Long Short-Term Memory (LSTM) 22

 5.5. Sequence-To-Sequence Models 23

 5.6. Shallow Neural Networks 23

6. Caffe Framework 45

 6.1. Highlights of Caffe 45

7. Euclidean Distance 46

8. Change Point Analysis 47

 8.1. E-divisive 48

 8.2. KCP 50

 8.3. Multirank 50

 8.4. DeCon 52

9. Problems with previous approaches 52

 9.1 Experiment Details 53

 9.1.1. Proposed approach 53

 9.1.2. Source Code 54

 9.1.3. Proposed custom CNN model 57

 9.1.4. Experimental Result 58

10. Conclusions 69

11. References 70

12. APPENDIX-1

1 | P a g e

Video Shot Boundary Detection

1. Abstract

Multimedia streams usage increases nowadays and that creates the scope of development
of efficient and effective methodologies for manipulating different image databases storing
this type of information. Any content-based access to video data always requires parsing of
each video stream into its building blocks. Any video stream consists of a number of shots,
each one is a sequence of frames pictured using a single camera. Transition from a shot to
the next one means switching from one camera to another. The detection of these
transitions, known as scene change or shot boundary detection, is the very first step in any
video stream-analysis system. There are numbers of proposed techniques are available for
solving the problem of shot boundary detection, but the major limitation to them are their
inefficiency, lack of reliability and less trustworthy. The performance has a direct impact on
the performance of all other stages as the reliability of the scene change detection stage is a
very significant requirement. Here, proposes to learn shot boundary detection end-to-end,
from pixels to final shot boundaries. For training such a model, we created our own dataset
and automatically generated transitions such as cuts, dissolves and fades. Here we propose
a Convolutional Neural Network (CNN) which is fully convolutional in time and efficiently
analyse hours of videos. Also, we propose to use Euclidean Distance algorithm and Change
Point Analysis algorithm to make the system more efficient and accurate in nature. With this
architecture my method will obtain state-of-the-art results while running at an unprecedented
speed. I outperform dissolve gradual detection, generate competitive performance for sharp
detections and produce significant improvement in wipes. In a short, the experimental results
achieve the high efficiency of the proposed system in detecting shot boundaries within
different video shots.

2. Introduction

All digital video information consists of a series of many frames or images. Over the years

image processing technology has developed comprehensive and complete measures and

techniques to index, store, edit, retrieve, sequence and present video material. To develop

any content-based manipulations on digital video stream information, this information must

first be structured and broken down into different components. The basic structural building

blocks are called shots and the boundaries between shots need to be determined

automatically.

A shot in video stream information may be defined as continuous images (i.e. frames) from a

single camera at a time. A shot boundary is defined the gap between two shots. A cut is a

type of shot boundary where one shot abruptly changes to another shot. An example of a

shot cut is where the last frame in one shot is followed by the first frame in the next.

Examples of other different types of shot boundary are fades (where the frames of the shot

gradually change from or to black), dissolves (where the frames of the first shot are gradually

morphed into the frames of the second) or wipes (where the frames of the first shot are

moved gradually in a horizontal or vertical direction into the frames of the second).

 The main reason why automatic shot boundary detection is difficult is the fact that any kind

of shot transition can be easily confused with camera and object motion which occurs in

video anyway. A shot with much object motion throughout the frame such as a sports or

action shot or a clip from a music video, can cause the false recognition of a shot boundary.

2 | P a g e

Conventionally, if there exist frames that are merged by the adjacent shots but belong to
neither of them, the transition is called a gradual one; otherwise, it is called a cut.[1]

Figure-1: hard cut effect[1]

Figure-3: Wipe effect[1]

Figure-2: fade effect[1]

Figure-4: Dissolve effect[1]

3. Literature Survey
This paper is mostly concentrate on the work till done in respect of video shot boundary
detection in different areas. John S. Boreczky et al [1996] proposed Comparison of video
shot boundary detection techniques and present a comparative analysis of various shot
boundary detection techniques and their variations including histograms, discrete cosine
transform, motion vector, and block matching methods. Patrick Bouthemy et al [1999]
proposed Unified Approach to Shot Change Detection and Camera Motion haracterization
which describes an approach to partition a video document into shots by using image motion
information, which is generally more intrinsic to the video structure itself. A. Miene et al
[2001] presented Advanced and Adaptive Shot Boundary Detection techniques which are
based on–feature extraction and shot boundary detection. First, three different features for
the measurement of shot boundaries within the video are extracted. Second, detection of the
shot boundaries based on the previously extracted features. H. Y: Mark Liaoff et al [2002]
proposed a novel dissolve detection algorithm which could avoid the mis-detection of
motions by using binomial distribution model to systematically determine the threshold
needed for discriminating a real dissolve from global or local motions. Jesús Bescós

[2004], proposed a detection of change of video shot(i.e. cut) in real time on MPEG22 online

video there he describes a software module for video temporal segmentation that is enough
capable of detecting abrupt transitions and all kinds of gradual transitions in real time.

3 | P a g e

Guillermo Cisneros et al [2005] proposed a document on A Unified Model for Video-Shot
Transition Detection Techniques. The approach presented here focuses on the mapping of
the space of distances between frames in a new decision space more suitable to achieve an
independent thresholding of the sequence. Liuhong Liang et al. [2005], presented an
Improved Trigger Limit Detection using video text information, in which various edge-based
techniques have been proposed to detect abrupt firing limits to avoid the influence of
common flashlights in many types of video, such as sports, news, entertainment and
interview videos. Daniel DeMenthon et al [2006] proposed a document on trigger limit
detection based on the correlation functions of video images. This document is based on the
correlation functions of images in the videos. The cut detection is based on the so-called
2max ratio criterion in a sequential image buffer. Dissolution detection is based on the
difference of image jump and linearity error in a sequential image buffer. Kota Iwamoto and
others [2007], the detection of wipes and digital video effects was proposed based on an
independent model of image boundary line characteristics pattern that is based on a new
independent model of patterns. These models are based on the characteristics of the image
boundary lines that divide the two image regions in the transition frames. Jinhui Yuan et al
[2008] proposed a document on a trigger limit detection method for news video based on the
segmentation and tracking of objects. It combines three main techniques: the method of
comparison of partitioned histograms, segmentation of video objects and tracking based on
wavelet analysis. The comparison of the partitioned histogram is used as the first filter to
effectively reduce the number of video frames that need segmentation and object tracking.
Yufeng Li et al [2008] proposed an article on Algorithm of detection of new shots based on
the theory of the information. First, the characteristics of the color and texture are extracted
by wavelet transform, then the difference between two successive frames that collide the
mutual information of the color characteristic and the mutual information of matching of the
texture characteristic is defined. The threshold is adjusted adaptively depending on the
entropy of the Continuous frames and does not depend on the type of video and the type of
shot. Vasileios T. Chasanis et al [2009] presented the detection of scenes in videos using
clustering of shots and alignment of sequences. First the keyframes were extracted using a
spectral clustering method using the fast global k-means algorithm in the clustering phase
and also providing an estimate of the number of the keyframes. Then, the shots are grouped
into groups using only the visual similarity as a function and are labeled according to the
group assigned to them. Jinchang Ren et al [2009] proposed a document on detection of
trigger limits in MPEG videos using local and global indicators that operate directly in the
compressed domain. Several local indicators are extracted from the MPEG macroblocks,
and Ada Boost is used for the selection and merging of features. The selected
characteristics are then used to classify the candidate cuts in five subspaces by pre-filtering
and rules-based decision making, then the global indicators of frame similarity are examined
among cut-off frames of cut candidates using the phase correlation. of CC images.
Priyadarshinee Adhikari et al [2009] proposed a document on Video Shot Boundary
Detection. This document presents the recovery of video using detection of limit of shot.
LihongXu et al [2010] proposed a paper on a new shot detection algorithm based on
grouping. This article presents a novel trigger limit detection algorithm based on the K-
means grouping. The extraction of the color feature is done first and then the difference of
the video frames is defined. The video frames are divided into several different sub-clusters
by performing K-means clusters. Wenzhu Xu and others [2010] proposed an article on a
new shot detection algorithm based on graph theory. This article presents a trigger limit
detection algorithm based on graph theory. Video frames are divided into several different
groups through the realization of a theoretical graphics algorithm. Arturo Donate et al [2010]
presented Detection of shooting limits in videos using a robust three-dimensional tracking.
The proposal is to extract the highlighted features of a video sequence and track them over
time to estimate the limits of the shots within the video. Min-Ho Park et al [2010] proposed
a paper on the detection of efficient trigger limits using characteristics based on block
movement. It is a measure of discontinuity in camera and an object / background movement
for SBD is proposed based on the combination of two movement characteristics: the

4 | P a g e

modified displaced frame difference (DFD) and the block wise movement similarity. Goran
J. Zajić et al [2011] proposed a document on detection of video trigger limits based on
multifractal analysis. Low-level features (color and texture characteristics) are extracted from
each frame in video sequence, then concatenated into feature vectors (FV) and stored in the
feature matrix. The rows of matrix correspond to FV of frames of the video sequence, while
the columns are time series of a particular FV component. Partha Pratim Mohanta et al
[2012], proposed an article on a model-based trigger limit detection technique that uses
frame transition parameters that is based on a formulated frame estimation scheme that

uses the previous frame and the next frame. Pablo Toharia et al [2012] proposed an article

on Shot Boundary detection using Zernike moments in multi-CPU multi-GPU architectures
along with the different possible hybrid combinations based on Zernike moments. Sandip T
et al. [2012] proposed a document on the video summary based on keyframes using the
automatic threshold and the speed of correspondence of the edges. First, the Histogram
difference of each frame is calculated, and then the edges of the candidate keyframes are
extracted by the Prewitt operator.
Zhe Ming Lu et al [2013] present a fast video trigger limit detection based on SVD and
pattern matching. It is based on the selection of segments and decomposition of singular
values (SVD). Initially, the positions of the firing limits and the lengths of the gradual
transitions are predicted using adaptation thresholds and most non-contour frames are
discarded at the same time. Sowmya R et al [2013] proposed a document on Analysis and
verification of summary video using Shot Boundary Detection. The analysis is based on the
difference of the block-based histogram and the euclidean distance difference based on
blocks for various block sizes. Ravi Mishra et al [2014] proposed an article on a
"Comparative study of the block matching algorithm and the complex transformation of two
trees for the detection of shots in videos". This article presents a comparison between the
two detection methods in terms of several parameters, such as false rate, hit rate, failure
rate tested in a set of different video sequences. Wenjing Tong et al [2015] proposed a
document on trigger limit detection based on CNN and video annotation. This analysis is
based on TAG frames generated by a CNN model. Ahmed Hassanien et al [2017]
proposed a document on detection of large-scale, rapid and precise trigger limits through
spatial-temporal convolutional neural networks. This analysis is based on exploiting Big Data
to optimize both the accuracy and speed of two large data sets.

4. Few Keywords and Definitions

4.1 What is Video?

Digital video is audio-visual stream in a binary format. Information is presented as a

sequence of digital data block, rather than in a continuous signal as analog information

provides.

Digital video shows up on our screens but conceptually the same as the simpler to

understand motion pictures, invented over couple of decades ago. Just like physical film and

analog video, a digital video stream is made up of individual frames, each one representing

a time slice/block of the scene. Film displays 24 frames/second, and an American video

presents 30 frames/second, it is known as the frame rate. To get smoother video need to

increase the number of frames in any given second. Digital video clips use frame rates from

12-30 frames per second, whereas 24 frames per second commonly used.

http://searchcio-midmarket.techtarget.com/definition/binary
http://searchcio-midmarket.techtarget.com/definition/digital

5 | P a g e

Figure-5 [19]

4.1.1. Hierarchical Structure of Video

Figure-6 [22]

 Scene: A number of shots that form a semantic unit.

6 | P a g e

 Shot: All frames with in single camera action.

 Frame: One Static image from a series of static images constituting a video.

4.1.1.1. Types of Shot

Figure-7

4.1.1.1.1. Hard Cut

Hard cut is the basic cutaway. The filmmaker is moves from the action to other things and
then comes back to the action. Cutaways are used to edit out boring or add action to a
sequence by changing the pace of the footage.

4.1.1.1.2. Fade

Two keywords, fade-in and fade-out usually signal the beginning or end of a scene,
especially if the filmmaker fades to/from black. This is the most common scenario, of course,
but fading to white has become trendy, too.

Hard Cut Transition

Fade Dissolve Wipe

Shot Transition

Gradual Transition

7 | P a g e

4.1.1.1.3. Dissolve

This is an editing technique where one clip seems to dissolve, or fade-in to the next. When
the first clip is fading out, getting lighter and lighter, the second clip starts fading in,
becoming more and more prominent/visible. The viewer is not aware of the transition as the
process usually happens so subtly and so quickly.

Figure-8: Fade – out gradual transition [18]

Figure-9: Fade – in gradual transition [18]

8 | P a g e

Figure-10: Dissolve transition [18]

4.1.1.1.4. Wipe

Figure-11: Wipe transition [18]

This wipe transition is the just opposite of the dissolve transition in that it draws attention to
itself. The best example of the wipe is what's known as the Iris Wipe, which you usually find
in silent films. Other commonly used wipe shapes includes stars, diamonds, and the old
turning clock.

4.2. Boundary Detection
 For any video indexing, browsing, retrieval, representation and other video analysis

technologies video shot boundary detection is the first and fundamental step.

 To identify the transition between every two adjacent shots, video shot boundary
detection is the process.

4.2.1. Earlier Various Approaches to Shot Detection

4.2.1.1 Pixel Comparison

In Pixel Comparison, if there two frames are significantly different and to count the number of

pixels that change in value more than any threshold. This method is sensitive to camera

motion. We note that manually adjusting the threshold is unlikely to be practical. This

9 | P a g e

commonly used matching process duplicates the process used to extract motion vectors

from an image pair. Then the pixel differences for each region were sorted, and then the

weighted sum of the sorted region differences. The Gradual transitions were detected by

generating a cumulative difference measures from consecutive values of the image

differences. During dissolves and fades, this chromatic image assumes a reasonably

constant value.

 Frame N +1

Figure-12

4.2.1.2. Histogram Comparison

The histogram comparison methods are the most common method used to detect shot
boundaries. The simplest histogram method computes, two types, gray level or color level
histograms of any of the two images. If the bin-wise difference between the two histograms
is above a threshold, a shot boundary is assumed.

Frame N

10 | P a g e

Figure-13: Histogram Comparison [20]

4.2.1.3. Statistical Differences

The statistical method is nothing but the idea of pixel differences by breaking the images into
regions/blocks and comparing statistical measures of the pixels in those regions. It divides
the frames into small regions. Then compares some of the few properties of every pixel in
those regions between successive frames using the measurable statistical computation
parameters.

11 | P a g e

4.2.1.4. Motion Vectors

MPEG compressed video sequences can also contains Motion vector information. The block
matching performed as part of MPEG encoding based on compression efficiency and thus
often selects inappropriate vectors for image processing purposes.

4.2.1.5. Edge Change Ratio

To detect, if any new edges have entered the image or if some old edges have disappeared,
commonly uses the edges of successive aligned frames are detected first and then the edge
pixels are paired with nearby edge pixels in the other image.

The main reason why automatic shot boundary detection is difficult is the fact that any kind

of shot transition can be easily confused with camera and object motion which occurs in

video anyway. A shot with much object motion throughout the frame such as a sports or

action shot or a clip from a music video, can cause the false recognition of a shot boundary.

In this project we report on shot boundary detection by using Convolutional Neural

Network(CNN).

12 | P a g e

Figure-14: Edge Change Ratio [21]

4.3. Deep Learning
As a part of Artificial Intelligence (AI) technology world, deep learning really stands behind
numerous innovations: both voice and image recognition, self-car driving, security
surveillance system etc. Nowadays, this technology has occupied multiple aspects of human
lives. Generates such a huge interest in both machine and deep learning technologies is
based on their advantages.

Figure-15: Deep Learning [23]

4.3.1. The Definition of Deep Learning
A set of machine learning algorithms that model high-level views in data using architectures
called Deep learning. However, a deep learning technology is based on Artificial Neural
Networks(ANNs). These ANNs helps continuously growing amounts of data and constantly
receive learning algorithms to increase the efficiency of training processes. The larger data
volumes are make the process more efficient. With the time passing, a neural network
covers a growing number of levels, the training process is called «deep». The higher its
productivity is the «deeper» this network penetrates.

4.3.2. How Deep Learning Works
Two main phases are there in a deep machine learning process: training and inferring.
Labeling of large amounts of data and determine their matching characteristics called
training process. The system compares these characteristics and memorizes(learns) them
to make correct conclusions when it faces similar data stream next time.
The following stages are there is a deep learning training process:

1. ANNs ask a set of binary false/true questions or.
2. Extracting numerical values from data blocks.
3. Classifying data according to the answers received.
4. Labeling Data.

During the inferring phase, the deep learning AI makes conclusions and label new
unexposed data using their previous knowledge.

4.3.3. Deep Learning and Machine Learning?
Deep learning is a kind of traditional machine learning. However, classical machine learning
is the extraction of new knowledge from a large data array loaded into the machine. Users
first formulate the machine training rules and then correct errors made by a machine. This
approach eliminates a negative overtraining effect frequently appearing in deep learning.
In machine learning, users provide both examples and training data to a machine to help the
system make correct decision is called supervised learning.
Diversity between machine learning and deep learning:

 Deep Learning uses a lot of un-labelled training data to make
appropriate conclusions whereas Machine Learning can use small data
stream provided by users.

 Unlike Machine Learning, Deep Learning needs high-performance
hardware.

https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D0%B5%D1%82%D1%8C
https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D0%B5%D1%82%D1%8C

13 | P a g e

 Machine Learning requires features to be accurately identified by users
while Deep Learning creates new features by itself.

 Machine Learning divides tasks into small pieces and then combine
received results into one conclusion while Deep Learning solves the
problem on the end-to-end basis.

 In comparison with Machine Learning, Deep Learning needs much
more time to train.

 Unlike Deep Learning, Machine Learning can provide enough
transparency for its decisions.

The machine creates its functionality by itself as long as it is possible - the concept of deep
learning explains. Deep learning applications use a hierarchical approach involving

determining the most important characteristics to compare to infer.

4.3.4. Creating New Features
Ability to generate new features from limited series of features located in the training dataset
is one of the main benefit of deep learning over various machine learning algorithms.
Therefore, deep learning algorithms can create new tasks to solve current ones.
Data scientists can save much time on working with big data and relying on this technology
as deep learning can create features without a human intervention. It allows the data
scientists to use more complex sets of features in comparison with traditional machine
learning software.

4.3.5. Advanced Analysis
Deep learning generates actionable results when solving data science tasks due to its
improved data processing models. While machine learning works only with labeled data,
deep learning supports unsupervised learning techniques that allow the system become
smarter on its own. Due to the capacity to determine the most important features allows
deep learning to efficiently provide data scientists with reliable and concise analysis results.

4.3.6. Deep Learning Challenges
Models of human abstract thinking used by deep learning rather than using it. Despite all its
benefits, this technology has a set of significant disadvantages also.

4.3.7. Continuous Input Data Management
A training process is based on analyzing large amounts of data is there in deep learning.
However, fast-moving and streaming input data provides little time for ensuring an efficient
training process. That is why data scientists adapt their deep learning algorithms in a way
neural networks can handle large amounts of continuous input data.

4.3.8. Ensuring Conclusion Transparency
Another important disadvantage of deep learning software is that it is not explicitly says the
reason why it has reached a certain conclusion. Unlike in case of traditional machine
learning, you cannot follow an algorithm to find out why your system has decided that it is a
cat on a picture, not a dog. Have to revise the whole DL algorithm to correct that.

4.3.9. Resource-Demanding Technology
Deep learning technology is a quite high resource demanding technology as it requires more
powerful GPU(Graphics processing unit)s, with large amounts of storage to train the models,
etc. Apart from this technology needs more time to train in comparison with traditional
machine learning process.
Though there are lots of disadvantages, deep learning discovers new improved methods of
unstructured big data analytics for those with the intention to use it. The businesses can
gain significant benefits from using deep learning within their tasks of data processing.

14 | P a g e

4.3.10. What is an Artificial Neural Network?
An ANN(artificial neural network) is based on the neural structure of the brain. It is also able
to learn and perform tasks like the followings as classification, prediction, decision-making,
visualization
An ANN consists of artificial neurons or processing elements and is organized in three
consecutive interconnected layers: input, hidden that may include more than one layer, and
output.

Figure-16: Artificial Neural Network[13]

The input layer contains input neurons those send information to the hidden layer. Then the
hidden layer sends data to the output layer. Every neuron has weighted inputs (synapses),
an activation function (defines the output given an input), and one output. Here synapses are
the adjustable parameters that helps to convert a neural network to a parameterized system.

Why Neural Network

• A neural network can perform tasks that a linear program cannot does.
• When an element of the neural network fails, it can continue without any problem by

their parallel nature.
• No reprogrammed is required in neural network learning.
• It can be implemented in any application and can be implemented without any

problem

https://en.wikipedia.org/wiki/Synaptic_weight
https://en.wikipedia.org/wiki/Activation_function

15 | P a g e

Figure-17: Artificial Neuron with four input[15]

Artificial neuron with four input
To get one output from the neuron, the weighted sum of the inputs produces the activation
signal that is passed to the activation function. The commonly used activation functions are
linear, step, sigmoid, tanh, and rectified linear unit (ReLu) functions.

Linear function

f(x)=ax

Step function

Logistic (Sigmoid) Function

Tanh Function

16 | P a g e

Rectified linear unit (ReLu) function

Figure-18[16]

The error of predictions is minimized and the network reaches a specified level of accuracy
during training. The method mostly used to determine the error contribution of each neuron
is called backpropagation that calculates the gradient of the loss function.
It is possible to make the system more flexible and more powerful by adding additional
hidden layers. Artificial neural networks with multiple hidden layers between the input and
output layers are called deep neural networks (DNNs), and they can model complex
nonlinear relationships.

4.3.10.1. Feedforward Neural Network
First and simplest type of artificial neural network devised was the feed-forward neural
network. It contains multiple neurons/nodes arranged in layers. Neurons/nodes from
adjacent layers have connections between them. All these connections have weights
associated with them.
An example of a feed-forward neural network is shown below.

17 | P a g e

Figure-19: An example of feedforward neural network[16]

A feed-forward neural network can consist of three types of nodes:

1. Input Nodes – This node provides information from the outside world to the network.

Together referred to as the “Input Layer”. In any of the Input nodes, no computation
is performed – they just pass on the information to the hidden nodes.

2. Hidden Nodes – The Hidden nodes have no direct connection with the outside world

(hence the name “hidden”). They perform computations and transfer information from
the input nodes to the output nodes. A collection of hidden nodes forms a “Hidden
Layer”. While a feedforward network will only have a single input layer and a single
output layer, it can have zero or multiple Hidden Layers.

3. Output Nodes – These nodes are collectively referred to as the “Output Layer”.

Those are responsible for computations and transferring information from the
network to the outside world.

In a feedforward network, the information moves in only forward direction – from the input
nodes, through the hidden nodes and to the output nodes. There are no cycles or loops in
the network.

Two examples of feedforward networks are given below:

1. Single Layer Perceptron – This is the simplest feedforward neural network and

does not contain any hidden layer.
2. Multi Layer Perceptron – A Multi-Layer Perceptron has one or more hidden layers.

18 | P a g e

Figure-20 shows a multi-layer perceptron with a single hidden layer. Note that all

connections have weights associated with them, but only three weights (w0, w1, w2) are
shown in the figure.

Input Layer: The Input layer has three nodes. The Bias node has a value of 1. The other

two nodes take X1 and X2 as external inputs (which are numerical values depending upon
the input dataset). As discussed above, no computation is performed in the Input layer, so
the outputs from nodes in the Input layer are 1, X1 and X2 respectively, which are fed into
the Hidden Layer.

Hidden Layer: The Hidden layer also has three nodes with the Bias node having an output

of 1. The output of the other two nodes in the Hidden layer depends on the outputs from the
Input layer (1, X1, X2) as well as the weights associated with the connections (edges).

Figure-20 shows the output calculation for one of the hidden nodes (highlighted). Similarly,

the output from other hidden node can be calculated.

Figure-20: A multi-layer perceptron having one hidden layer[16]

19 | P a g e

Output Layer: The two nodes of Output layer which take inputs from the Hidden layer and

perform similar computations as shown for the highlighted hidden node. The values
calculated (Y1 and Y2) as a result of these computations act as outputs of the Multi Layer
Perceptron.
Given a set of features X = (x1, x2, …) and a target y, a Multi Layer Perceptron can learn the
relationship between the features and the target, for either classification or regression.

4.3.10.2. Backward Propagation of Errors

This is often abbreviated as BackProp is one of several ways in which an artificial neural
network (ANN) can be trained. It is under a supervised training scheme, which means that it
learns from the tagged training data.
To put it in simple terms, BackProp is like "learning from mistakes". The supervisor corrects
the ANN every time he makes a mistake.
An artificial neural network consists of nodes in the following layers: input layer, intermediate
hidden layer, and output layer. The "weights" associated with the connected nodes of
adjacent layers. The goal of learning is to assign correct weights for these edges. In
supervised learning, the training set is labeled. This means that, for some given inputs, we
know the desired / expected output.

BackProp Algorithm:

Initially, all edge weights are assigned randomly. For each entry in the training data set, the
ANN is activated and its output is observed. This result is compared to the desired result that
we already know, and the error "propagates" back to the previous layer. This error observes
and the weights are "adjusted" accordingly. This process is repeated until the output error is
below a predetermined threshold.
Once the previous algorithm ends, we have a "learned" ANN that, we believe, is ready to
work with "new" entries. It is said that this ANN has learned from several examples (tagged
data) and its errors (propagation of errors).
Now that we have an idea of how Backpropagation works, let's go back to our student brand
data set shown above.

The multilayer perceptron shown in Figure-20, has two nodes in the input layer (apart from

the Bias node) that take the 'Hours Studied' and 'Mid Term Marks' entries ' It also has a
hidden layer with two nodes (apart from the Bias node). The output layer also has two
nodes: the upper node generates the probability of 'Pass', while the lower node generates
the probability of 'Fail'.
In classification tasks, we generally use a Softmax function as the activation function in the
Multilayer Perceptron output layer to ensure that the outputs are probabilities and add 1. The
Softmax function takes a vector of arbitrary real value scores and crushes it to a vector of
values between zero and one that adds up to one. So, in this case,

Probability (Pass) + Probability (Fail) = 1

Step 1: Forward Propagation
All weights in the network are randomly assigned. Lets consider the hidden layer node

marked V in Figure-20 below. Suppose that the weights of the connections of the inputs to

that node are w1, w2 and w3 (as shown).
Then, the network takes the first example of training as input (we know that for entries 35
and 67, the probability of passing is 1).
 • Network input = [35, 67]
 • Desired network output (destination) = [1, 0]
Then, the V output of the node under consideration can be calculated in the following way (f
is an activation function as a sigmoid):
 V = f (1 * w1 + 35 * w2 + 67 * w3)

20 | P a g e

Similarly, the outputs of the other node in the hidden layer are also calculated. The inputs to
the two nodes in the output layer come from the outputs of the two nodes in the hidden layer.
This allows us to calculate the exit probabilities of the two nodes in the output layer.
Suppose, the output probabilities of the two nodes in the output layer are 0.4 and 0.6
respectively. We can see that the calculated probabilities (0.4 and 0.6) are very far from the

desired probabilities (1 and 0 respectively), hence the network in Figure-20 is said to have

an ‘Incorrect Output’.

Figure-21: Forward propagation step in a multi-layer perceptron[16]

Step 2: Back Propagation and Weight Updation
 We calculate the total error in the output nodes and propagate these errors through the
network using Backpropagation to calculate the gradients. Then we use an optimization
method like Gradient Descent to 'adjust' all the weights in the network in order to reduce the
error in the output layer. This is shown in Figure 6 below (ignore the mathematical equations
in the figure for now). Suppose that the new weights associated with the considered node
are w4, w5 and w6 (after the inverse propagation and weight adjustment).

Figure-22: Backward propagation and weight updation step in a multi-layer perceptron[16]

If we now enter the same example into the network again, the network should work better
than before since the weights have now been adjusted to minimize the prediction error. As
shown in Figure 7, errors at the output nodes are now reduced to [0.2, -0.2] compared to
[0.6, -0.4] above. This means that our network has learned to correctly classify our first
example of training.

21 | P a g e

Figure-23: The MLP network now performs better on the same input[16]

We repeat this process with all the other examples of training in our data set. Then, it is said
that our network learned those examples.
If we now want to predict if a student who studies 25 hours and has 70 medium-term
qualifications will pass the final term, we pass through the forward propagation step and find
the exit probabilities for Pass and Fail.
I have avoided the mathematical equations and the explanation of concepts like 'Gradient
Descent' here and I have tried to develop an intuition for the algorithm. For a more
mathematically involved discussion of the Backpropagation algorithm, see this link.

5. Different Neural Networks
5.1. Convolutional Neural Network (CNN)

Figure-24: Typical CNN architecture[16]

A convolutional neuronal network (CNN) contains one or more convolutional layers, grouped
or fully connected, and uses a variation of multilayer perceptions. The convolutional layers
use a convolution operation at the input that passes the result to the next layer.
Yoon Kim in convolutional neural networks for classifying sentences describes the process
and results of text classification tasks using CNN. He presents a model built on word2vec,
carries out a series of experiments with it and compares it with several reference points,
which shows that the model has an excellent performance.

22 | P a g e

5.2. Recursive Neural Network (RNN)

Figure-25: A simple recursive neural network architecture[16]

A recursive neural network (RNN) is a type of deep neural network formed by applying on
the same original set of weights in a recursive manner on a structure to make a structured
prediction on input structures of varying size, traversing a given structure in topological
order. In the simplest architecture, a non-linearity such as tanh and a weighting matrix that is
shared throughout the network are used to combine nodes in parents.

5.3. Recurrent Neural Network (RNN)
A recurrent neural network (RNN), unlike a feedforward neural network, is a variant of a
recursive artificial neural network in which the connections between the neurons make a
directed cycle. It means that the output depends not only on the current inputs but also on
the neuronal state of the previous step. This memory allows users to solve NLP problems
such as handwriting recognition or voice recognition. In a document, Generation of natural
language, paraphrasing and summary of revisions of users with recurring neural networks,
the authors demonstrate a recurrent neural network model (RNN) that can generate novel
sentences and document summaries.
Siwei Lai, Liheng Xu, Kang Liu and Jun Zhao created a recurrent convolutional neural
network for text classification without human-designed functions and described it in recurrent
convolutional neural networks for text classification. His model was compared with existing
text classification methods such as Bag of Words, Bigrams + LR, SVM, LDA, Tree Kernels,
Recursive Neural Network and CNN. It was shown that their model exceeds the traditional
methods for all the data sets used.

23 | P a g e

5.4. Long Short-Term Memory (LSTM)

Figure-26: A peephole LSTM block with input, output, and forget gates[16]

A specific recurrent neural network (RNN) architecture is the LSTM(Long Short-Term
Memory) that was designed to model a temporal sequences with their long-range
dependencies what is bit more accurately than a conventional RNNs. LSTM does not use
the activation function within its recurring components, the stored values are not modified
and the gradient does not tend to disappear during training. In general, LSTM units are
implemented in "blocks" with several units. These blocks have three or four "doors" (for
example, entrance door, forgetting door, exit door) that control the flow of information that is
based on the logistics function.

However, Apple, Amazon, Google, Microsoft and other companies incorporated LSTM as a
fundamental element in their products.

5.5. Sequence-To-Sequence models
In general, a sequence-to-sequence model consists of two recurrent neural networks: an
encoder that processes the input and a decoder that produces the output. The encoder and
the decoder may use the same or different sets of parameters.

Sequence to sequence models are mainly used in answering systems for questions,
chatbots and machine translation. Such multilayer cells have been used successfully in
sequence-to-sequence models for translation in the Sequence to Sequence Learning with
Neural Networks study.

In a Paraphrase Detection method Using Recursive Autoencoder, a well established
recursive autoencoder architecture is presented. Representations are vectors in a n-
dimensional semantic space where sentences with similar meanings are close to each other.

5.6. Shallow Neural Networks
Shallow models are also popular and useful tools. For example, a word2vec is a group of
two-layer surface models that are used to produce word inlays. Presented in Efficient

24 | P a g e

Estimation of Representations of Words in Vector Space, word2vec takes a large corpus of
text as input and produces a vector space. Each word in the corpus obtains the
corresponding vector in this space. The distinctive feature is that the words from common
contexts in the corpus are located close to each other in the vector space.

Why CNN is smarter way to train a data set
Not to feed the entire images in our neural network as a grid of numbers, instead of doing
that we are going to do something much better way that takes advantage of the idea that an
object is the same no matter where it appears in an image.

This is how it will work, step by step:

Step 1: Divide the image into overlapping tiles, over the entire original image let's move a
sliding window and save each result as a small and separate image mosaik:

Figure-27[15]

By doing this, we converted our original image into 77 small mosaics of images of equal
size.

Step 2: Feed each image mosaic into a small neural network

Previously, we introduced a single image in a neural network to see if it was an "8". We will
do exactly the same here, but we will do it for each individual image mosaic:

25 | P a g e

Figure-28[15]

Like once for each tile, repeat this 77 times.

However, there can be a big twist: we will keep the same neural network weights for each
tile in the same original image. We are going to treat each mosaic image equally. If
something interesting appears in a given mosaic, we will mark it as interesting.

Step 3: save the results of each tile in a new matrix. We do not want to lose track of the
layout of the original chips. So we save the result of processing each tile in a grid in the
same layout as the original image. Does it look like this:

Figure-29[15]

26 | P a g e

In other words, we started with a large image and then ended up with a slightly smaller
matrix that records which sections of our original image were the most interesting.

Step 4: reduction of samples. The result of Step 3 was a matrix that states which parts of the
original image are the most interesting. But that set is still quite large:

Figure-30[15]

To reduce the size of the matrix, we reduce it by means of an algorithm called maximum
grouping. It sounds elegant, but it's not for nothing!

We will see each square of 2x2 of the matrix and keep the largest number:

Figure-31[15]

27 | P a g e

Incase we find something interesting in any of the four input tiles that make up each 2x2 grid,
we will keep the most interesting bit. This reduces the size of our matrix while keeping the
most important bits.

Final step: make a prediction

So far, we have reduced a giant image to a fairly small matrix.

Guess what? That matrix is just a group of numbers, so we can use that small matrix as
input into another neural network. This final neural network will decide whether the image is
or does not match. To differentiate it from the convolution step, we call it a "totally
connected" network.

Therefore, from start to finish, our entire five-step pipeline looks like this:

Figure-32[15]

Add even more steps

Our line of image processing is a series of steps: convolution, maximum use and finally a
fully connected network.

When solving problems in the real world, these steps can be combined and stacked as many
times as you want. It can have two, three or even ten layers of convolution. You can add the
maximum grouping where you want to reduce the size of your data.

The basic idea is to start with a large image and gradually reduce it, step by step, until it
finally has a single result. However, the more complicated features your network can
recognize if more convolution steps you have.

For example, the first convolution step could learn to recognize sharp edges, the second
convolution step could recognize peaks using its knowledge of sharp edges, the third step
could recognize whole birds using their knowledge of peaks, etc.

28 | P a g e

This is what seems to be a more realistic deep convolutional network (like the one you would
find in a research paper):

Figure-33[15]

In this case, they start an image of 224 x 224 pixels, apply the convolution and the maximum

grouping twice, apply the convolution 3 more times, apply the maximum combination and

then have two totally connected layers. The final result is that the image is classified in one

of the 1000 categories.

Convolutional Neural Networks (CNNs / ConvNets)
 The convolutional neural networks are very similar to the ordinary neural networks. They are

formed by neurons and that have weights and biases that can be learned. Each neuron
receives some inputs, makes a knitted product and optionally follows it with a non-linearity.
The entire network still expresses a unique distinguishable scoring function: from the pixels
of the unformatted image on one end to the class scores on the other. And they still have a
loss function (for example, SVM / Softmax) in the last layer (fully connected) and all the tips /
tricks that we developed to learn regular neural networks are still applied.
The ConvNet architectures explicitly assume that the entries are images, however, that
allows to encode certain properties in the architecture. These make the forwarding function
more efficient to implement and greatly reduce the number of parameters in the network.

Architecture Overview:
 Recall: regular neural networks. However, each hidden layer is made of a set of neurons

and each neuron is completely connected to all the neurons in the previous layer, and where
the neurons in a single layer operate completely independently and do not share any
connection. The last fully connected layer is called the "output layer" and in the classification
configuration it represents the class scores.

Regular neural networks do not adapt well to complete images. In CIFAR-10, the images are
only 32x32x3 (32 wide, 32 high, 3 color channels), so a single neuron totally connected in a
hidden first layer of a normal neural network would have 32 * 32 * 3 = 3072 pesos. This
amount seems manageable, but it is evident that this completely connected structure does
not adapt to larger images. For example, a more respectable size image, p. 200x200x3,
would lead to neurons that have 200 * 200 * 3 = 120,000 pesos. On the other hand, it is
almost certain that we would like to have several of these neurons, so the parameters would
add up quickly. Clearly, this complete connectivity is a waste and the large number of
parameters would quickly lead to an excessive adjustment.

29 | P a g e

3D volumes of neurons. In CNN, the input consists of images and restricts the architecture in
a more sensible way. In particular, the layers of a ConvNet have neurons arranged in 3
dimensions: width, height, depth. The neurons in a layer will only be connected to a small
region of the previous layer, instead of all the neurons in a totally connected way. In addition,
the final output layer for CIFAR-10 has dimensions of 1x1x10, because at the end of the
ConvNet architecture we will reduce the entire image in a single vector of class scores. Here
is a visualization:

 Figure-34[17]

Left: a 3-layer regular neural network. Right: A ConvNet organizes its neurons in three
dimensions (width, height, depth), as shown in one of the layers. Each layer of a ConvNet
transforms the 3D input volume into a 3D output volume of neuronal activations.

A ConvNet is composed of layers. Layers used to build ConvNets

A simple ConvNet is a sequence of layers, volume of activations into another through
function. We use three main types of layers to build ConvNet architectures: convolutional
layer, grouping layer and fully connected layer (exactly as seen in normal neural networks).
We will stack these layers to form a complete ConvNet architecture.

Example architecture: general description. We will go into more details below, but a simple
ConvNet for the CIFAR-10 classification could have the architecture [INPUT - CONV - RELU
- POOL - FC]. More details:

30 | P a g e

INPUT of similar [32x32x3] will support the pixel values without formatting the image, in this
case an image of width 32, height 32 and with three color channels R, G, B.

The CONV layer will calculate the output of the neurons that are connected to the local
regions in the input, each calculating a scalar product between its weights and a small region
to which they are connected in the input volume. This can generate a volume like [32x32x12]
if we decide to use 12 filters.

The RELU layer will apply an activation function for elements, such as maximum (0, x)
maximum (0, x) at zero. This leaves the volume size unchanged ([32x32x12]).

The POOL layer will perform a sampling reduction operation along the spatial dimensions
(width, height), resulting in a volume such as [16x16x12].

The FC layer (ie fully connected) will calculate the class scores, which will result in a volume
size [1x1x10], where each of the 10 numbers corresponds to a class score. As with ordinary
neural networks, and as the name implies, each neuron in this layer will connect to all the
numbers in the previous volume.

With this approach, from the original pixel values to the final class scores, ConvNets
transforms the original image layer by layer Note that some layers contain parameters and
others do not. In particular, the CONV / FC layers perform transformations that are a function
not only of the activations in the input volume, but also of the parameters (the weights and
biases of the neurons). The parameters in the CONV / FC layers will be trained with
gradient slope so that the class scores that ConvNet computes are consistent with the labels
in the training set for each image.

In summary:
A ConvNet architecture is, in the simplest case, a list of layers that transform the volume of
the image into an output volume (for example, maintaining the class scores)

There are some different types of layers (for example, CONV / FC / RELU / POOL are by far
the most popular)

Each layer accepts a 3D input volume and transforms it into a 3D output volume through a
differentiable function

Each layer may or may not have parameters (for example, CONV / FC do, RELU / POOL
no)

Each layer may or may not have additional hyperparameters (for example, CONV / FC /
POOL do, RELU does not)

31 | P a g e

Figure-35[17]

Activations of an example ConvNet architecture. The initial volume stores the pixels of the
raw image (left) and the last volume stores the class scores (right). Each volume of
activations along the processing path is displayed as a column. Since it is difficult to
visualize volumes in 3D, we place the divisions of each volume in rows. The last layer
volume contains the scores of each class, but here we only visualize the 5 main classified
scores and print the labels of each one. The complete web-based demo is shown in the
header of our website. The architecture shown here is a small VGG network, which will be
discussed later.

Now we describe the individual layers and the details of their hyperparameters and their
connectivities.

Convolutional Layer
 The Conv layer is the basic component of a Convolutional Network that performs most of
the computational heavy lifting.
Overview and intuition without brain things. First, let's analyze what the CONV layer
calculates without the brain / neuron analogies. The parameters of the CONV layer consist
of a set of filters that can be learned. Each filter is spatially small (wide and high), but
extends through the total depth of the input volume. For example, a typical filter in a first
layer of a ConvNet could have a size of 5x5x3 (that is, 5 pixels wide and high, and 3
because the images have depth 3, the color channels). During the forward pass, we slide
(more precisely, we convolve) each filter across the width and height of the input volume and
calculate the point products between the filter inputs and the input at any position. As we
slide the filter over the width and height of the input volume we will produce a two-
dimensional activation map that provides the responses of that filter in each spatial position.
Intuitively, the network will learn the filters that are activated when they see some kind of
visual characteristic, such as an edge of some orientation or a spot of some color in the first
layer, or eventually whole patterns in the shape of a wheel or honeycomb in the upper layers
of network . Now, we will have a complete set of filters in each CONV layer (for example, 12
filters), and each of them will produce a two-dimensional activation map separately. We will
stack these activation maps along the depth dimension and produce the output volume.

32 | P a g e

The brain view: If you are a fan of the brain / neuron analogies, each input in the 3D

output volume can also be interpreted as an output of a neuron that only looks at a small
region in the input and shares parameters with all the neurons on the left and spatially right
(since all these numbers result from applying the same filter). Now we will discuss the details
of the neural connectivity, its disposition in space and its distribution scheme of parameters.

Local Connectivity: It is not practical to connect the neurons to all the neurons in the

previous volume when it comes to high-dimensional inputs such as images. Instead, we will
connect each neuron to only one local region of the input volume. The hyperparameter calls
the receptive field of the neuron. The connectivity along the depth axis is always. It is always
important to emphasize again on this asymmetry in the way we are going to treat the spatial
dimensions and the depth dimension: the connections are local in space (width and height),
but always along the entire depth of the input volume. Example 1. Suppose, for example,
that the input volume has a size [32x32x3], (for example, a RGB image CIFAR-10). If the
receptive field (or filter size) is 5x5, then each neuron in the convective layer will have
weights in a region [5x5x3] in the input volume, for a total of 5 * 5 * 3 = 75 pesos (y + 1 bias)
parameter). Note that the extension of the connectivity along the depth axis must be 3, since
this is the depth of the input volume.

Example 2. Suppose that an input volume has a size [16x16x20]. Then, using an example
receptive field size of 3x3, each neuron in the convective layer would now have a total of 3 *
3 * 20 = 180 connections to the input volume. Note that, once again, the connectivity is local
in space (for example, 3x3), but complete along the entry depth (20).

33 | P a g e

Figure-36[17]

Left: a sample input volume in red (for example, a CIFAR-10 image of 32x32x3) and an
example volume of neurons in the first Convolutional layer. In a convolutional layer each
neuron is connected in full depth to a local region. Note that there are multiple neurons (5 in
this example) along the depth, all looking at the same region at the entrance; see the
explanation of the depth columns in the following text. Right: the neurons of the neural
network chapter remain unchanged: they still calculate a point product of their weights with
the input followed by a non-linearity, but now their connectivity is restricted to being spatially
local.

Spatial arrangement: Already explained the input volume of each neuron in a CNN with

the and not yet discussed about how many neurons there are in the output. Three
hyperparameters control the size of the output volume: depth, stride and zero fill. We talk
about these below:
Depth: First, the depth of the output volume is a hyperparameter: it corresponds to the

number of filters that we would like to use, each one learning to look for something different
in the input. For example, if the first convolutional layer takes the raw image as input, then
different neurons along the depth dimension may be activated in the presence of several

34 | P a g e

oriented edges. Here we refer to a set of neurons that belong at the same region of the
entrance as a column of depth.

Stride: Second, we must specify the stride with which we slide the filter. When the stride is

1, we move the filters one pixel at a time. When the stride is two.

Zero-padding: Zero-padding: As we will see soon, it will sometimes be convenient to fill the

input volume with zeros around the edge. The size of this zero fill is a hyperparameter. The
good feature of the zero fill is that it will allow us to control the spatial size of the output
volumes.
We can calculate the spatial size of the output volume as a function of the size of the input
volume (WW), the size of the receptive field of the Conv Layer neurons (FF), the stride with
which they are applied (SS) and the amount of zero padding used (PP) on the edge. You
can convince yourself that the correct formula for calculating how many neurons "fit" is given
by (WF + 2P) / S + 1 (WF + 2P) / S + 1. For example, for a 7x7 input and a 3x3 filter with
Stride 1 and pad 0 would get a 5x5 output. With stride 2 we would obtain a 3x3 output.
Let'salso see another graphic example:

Figure-37[17]

Illustration of the spatial arrangement. In this example, there is only one spatial dimension (x
axis), one neuron with a receptive field size of F = 3, the input size is W = 5, and there is no
fill of P = 1. Left: the neuron with striae through the stride entrance of S = 1, giving size
output (5 - 3 + 2) / 1 + 1 = 5. Right: the neuron uses stride of S = 2, giving size output (5 - 3)
+ 2) / 2 + 1 = 3. Note that stride S = 3 could not be used, since it would not fit perfectly in the
volume. In terms of the equation, this can be determined since (5 - 3 + 2) = 4 is not divisible
by 3.

The weights of the neurons are in this example [1,0, -1] (shown on the right), and their bias
is zero. These weights are shared in all yellow neurons (see the shared use of parameters
below).

Use of zero fill. In the previous example on the left, note that the input dimension was 5 and
the output dimension was the same: also 5. This worked because our receptive fields were 3
and we used zero fill of 1. If no fill was used zero, then the output volume would have had a
spatial dimension of only 3, because that's the number of neurons that would "fit" into the
original input. In general, setting the zero fill as P = (F-1) / 2P = (F-1) / 2 when the stride is S
= 1S = 1 ensures that the input volume and output volume will be spatially the same size . It
is very common to use zero padding in this way and we will discuss the full reasons when
we talk more about ConvNet architectures.

Restrictions on progress. Notice again that the hyperparameters of spatial arrangement have
mutual restrictions. For example, when the input has a size W = 10W = 10, zero padding is
not used P = 0P = 0, and the filter size is F = 3F = 3, then it would be impossible to use
stride S = 2S = 2, since (WF + 2P) / S + 1 = (10-3 + 0) /2+1=4.5 (WF + 2P) / S + 1 = (10-3 +
0) / 2 + 1 = 4.5, that is, it is not an integer, which indicates that the neurons do not "fit" neatly

35 | P a g e

and symmetrically through the input. Therefore, this configuration of the hyperparameters is
considered invalid, and a ConvNet library could throw an exception or zero pad the rest so
that it fits, or cut the entry to fit, or something. As we will see in the ConvNet architectures
section, sizing the ConvNets properly so that all the dimensions "work" can be a real
headache, that the use of zero fill and some design guidelines will significantly alleviate.

Example of the real world. The architecture that won the ImageNet challenge in 2012
accepted images of size [227x227x3]. In the first convolutional layer, he used neurons with
receptive field size F = 11F = 11, stride S = 4S = 4 and no zero fill P = 0P = 0. As (227 - 11) /
4 + 1 = 55, and as the Conv layer had a depth of K = 96K = 96, the output volume of the
Conv layer had a size [55x55x96]. Each of the 55 * 55 * 96 neurons in this volume was
connected to a region of size [11x11x3] in the input volume. In addition, the 96 neurons in
each depth column are connected to the same region [11x11x3] of the input, but of course
with different weights. As a diversion aside, if you read the current document, it states that
the input images were 224x224, which is undoubtedly incorrect because (224 - 11) / 4 + 1 is
quite clear that it is not a whole number. This has confused many people in the story of
ConvNets and little is known about what happened.

Parameter Sharing

The parameter sharing scheme is used in Convolutional layers to control the number of
parameters. Using the previous real-world example, we see that there are 55 * 55 * 96 =
290,400 neurons in the first Conv Layer, and each has 11 * 11 * 3 = 363 weights and 1 bias.
Now, this adds 290400 * 364 = 105,705,600 parameters. Truely this number is very high.

It turns out that we can drastically reduce the number of parameters by making a reasonable
assumption: that if a characteristic is useful for calculating at some spatial position (x, y),
then it should also be useful to calculate at a different position (x2), y2). In other words, by
denoting a single two-dimensional portion of depth as a depth cut (for example, a volume of
size [55x55x96] has 96 depth cuts, each of size [55x55]), we will restrict the neurons in each
depth segment to use the same weights and biases. With this parameter distribution
scheme, the first convection layer in our example would now have only 96 unique sets of
weights (one for each depth segment), for a total of 95 * 11 * 11 * 3 = 34,848 unique weights
or 34,944 parameters (+96 biases). Alternatively, all 55 * 55 neurons in each depth sector
will now use the same parameters. During backpropagation, each neuron in the volume will
calculate the gradient for its weights, but these gradients will be added in each depth sector
and will only be updated a single set of weights/segment.

Note that if all neurons in a single depth segment are using the same weight vector, then the
forward pass of the CONV layer can be calculated in each depth segment as a convolution
of the neuron weights with the volume input (hence the name: Convolutional Layer) That is
why it is common to refer to sets of weights as a filter (or a core), which is convoluted with

36 | P a g e

the input.

Figure-38[17]

Sample filters learned by Krizhevsky et al. Each of the 96 filters shown here is of size
[11x11x3], and each is shared by the 55 * 55 neurons in a depth segment. Note that the
assumption of sharing parameters is relatively reasonable: if the detection of a horizontal
edge is important at some location in the image, it should also be intuitively useful at another
location due to the invariant structure of translation of the images. Therefore, it is not
necessary to re-learn to detect a horizontal edge in each of the 55 * 55 different locations in
the output volume of the Conv layer.

Keep in mind that sometimes the assumption of sharing parameters may not make sense.
This is especially the case when the input images to a ConvNet have a specific centered
structure, where we should expect, for example, that completely different characteristics
would be learned on one side of the image than on the other. A practical example is when
the input are faces that have been centered on the image. It is expected that different
specific characteristics of the eye or hair can be learned (and should be) in different spatial
locations. In that scenario, it is a common way to relax the parameters exchange scheme
and, instead, simply call the layer Layer locally connected.

Numpy examples: For the above discussion to be more concrete, let us express the same
ideas, but in the code and with a specific example. Suppose the input volume is a numpy
matrix X. Then:

A column of depth (or a fiber) in the position (x, y) would be the activations X [x, y,:].

A depth cut, or equivalent to an activation map in depth d, would be the activations X [:,:, d].

Conv Layer Example. Suppose that the input volume X has the form X.shape: (11,11,4).
Suppose further that we do not use zero fill (P = 0P = 0), that the size of the filter is F = 5F =
5, and that the stride is S = 2S = 2. The output volume, therefore, would have a size spatial
(11-5) / 2 + 1 = 4, giving a volume with width and height of 4. The activation map in the
output volume (call it V), it would look like this (only some of the elements are computed in
this example):

V [0,0,0] = np.sum (X [: 5 ,: 5,:] * W0) + b0

V [1,0,0] = np.sum (X [2: 7 ,: 5,:] * W0) + b0

37 | P a g e

V [2,0,0] = np.sum (X [4: 9 ,: 5,:] * W0) + b0

V [3,0,0] = np.sum (X [6: 11 ,: 5,:] * W0) + b0

Remember that in numpy, the operation * above denotes the multiplication by elements
between the matrices. Note also that the weight vector W0 is the weight vector of that
neuron and b0 is the bias. Here, we assume that W0 has the form W0.shape: (5,5,4), since
the size of the filter is 5 and the depth of the input volume is 4. Note that at each point, we
are calculating the scalar product as seen before in ordinary neural networks. In addition, we
see that we are using the same weight and bias (due to the sharing of parameters), and
where the dimensions along the width are increasing in steps of 2 (ie, the stride). To build a
second activation map on the output volume, we would have:

V [0,0,1] = np.sum (X [: 5 ,: 5,:] * W1) + b1

V [1,0,1] = np.sum (X [2: 7 ,: 5,:] * W1) + b1

V [2,0,1] = np.sum (X [4: 9 ,: 5,:] * W1) + b1

V [3,0,1] = np.sum (X [6: 11 ,: 5,:] * W1) + b1

V [0,1,1] = np.sum (X [: 5,2: 7,:] * W1) + b1 (example of going y)

V [2,3,1] = np.sum (X [4: 9,6: 11,:] * W1) + b1 (or both)

we are indexing in the second depth dimension in V because we are computing the second
activation map readily, and that we now use another different set of parameters (W11). In
the previous example, we are for brevity omitting some of the other operations that Conv
Layer would perform to fill in the other parts of the output matrix V. Also, remember that
these activation maps are often followed element through an activation function as ReLU,
but this is not shown here.

Summary. To summarize, the coexistence layer:

Accepts a volume size W1 × H1 × D1W1 × H1 × D1

Requires four hyperparameters:

o Number of KK filters,

or its spatial extension FF,

or the SS stride,

or the amount of zero padding PP.

Produces a volume size W2 × H2 × D2W2 × H2 × D2 where:

or W2 = (W1-F + 2P) / S + 1W2 = (W1-F + 2P) / S + 1

or H2 = (H1-F + 2P) / S + 1H2 = (H1-F + 2P) / S + 1 (ie the width and height are calculated
equally by symmetry)

38 | P a g e

or D2 = KD2 = K

Now, enter weights E⋅F⋅D1F⋅E⋅D1 per filter, for a total of (E⋅F⋅D1) ⋅K (E⋅F⋅D1) ⋅K1 weights
and KK1.

In the output volume, the depth division dd-th (of size W2 × H2W2 × H2) is the result of
performing a valid convolution of the dd-th filter on the input volume with a stride of SS, and
then compensates with dd bias

A common configuration of hyperparameters is F = 3, S = 1, P = 1F = 3, S = 1, P = 1. There
are common way for conventions and rules that motivate these hyperparameters. See the
ConvNet architectures section below.

Convolution Demo: Below is a demonstration in execution of a CONV layer. Because 3D

volumes are difficult to visualize, all volumes (input volume (in blue), weight volumes (in red),
output volume (in green) are displayed with each depth sector stacked in rows. The input
volume is of size W1 = 5, H1 = 5, D1 = 3W1 = 5, H1 = 5, D1 = 3, and the parameters of the
CONV layer are K = 2, F = 3, S = 2, P = 1K = 2, F = 3, S = 2, P = 1. That is, we have two
filters of size 3 × 33 × 3 and apply with a stride of 2. Therefore, the size of the output volume
has a spatial size (5 - 3 + 2) / 2 + 1 = 3. Also, note that a fill of P = 1P = 1 is applied to the
input volume, making the outer edge of the input volume zero. display iterates over the
output activations (green) and shows that each element is calculated by elements multiplying
the highlighted input (blue) with the filter (red), summarizing it and then compensating the
result for the bias.

Implementation as Matrix Multiplication: Note that the convolution operation

essentially performs point products between the filters and the local regions of the input. A
common implementation pattern of the CONV layer is to take advantage of this fact and
formulate the forward step of a convolutional layer as a large matrix multiplied as follows:

The regions of a input image are stretched in columns by an operation commonly called
im2col. For example, if the entry is [227x227x3] and it will be convoluted with 11x11x3 filters
in step 4, we would take [11x11x3] blocks of pixels in the input and stretch each block in a
column vector of size 11 * 11 * 3 = 363 When iterating this process in the entry in stride of 4
we obtain (227-11) / 4 + 1 = 55 locations along width and height, which leads to an output
matrix X_col of im2col of size [363 x 3025], where each column is a stretched receptive field
and there are 55 * 55 = 3025 of them in total. Note that since the receptive fields overlap,
each number in the input volume can be duplicated in multiple different columns.

The weights of the CONV layer extend similarly in rows. For example, if there are 96 filters of
size [11x11x3] this would give a W_row array of size [96 x 363].

The result of a convolution is now equivalent to making a large matrix multiply np.dot
(W_row, X_col), which evaluates the product of points between each filter and each
receptive field location. In our example, the output of this operation would be [96 x 3025],
giving the output of the scalar product of each filter in each location.

The result must finally be reconfigured in its proper output dimension [55x55x96].
This approach has the disadvantage that it can use a lot of memory, since some values in
the input volume are replicated several times in X_col. However, the benefit is that there are
many very efficient implementations of the Matrix Multiplication that we can take advantage
of (for example, in the commonly used BLAS API). In addition, the same idea of im2col can
be reused to perform the grouping operation, which we will discuss below.

39 | P a g e

Backpropagation: The backward pass for a convolution operation (for data and weights)

is also a convolution (but with spatially inverted filters). This is easy to obtain in the one-
dimensional case with a toy example (not expanded at the moment).

Convolution 1x1. On the other hand, several documents use 1x1 convolutions, as first
investigated by the network in the network. Some people get confused at the beginning
when they see the 1x1 convolutions, especially when they come from the processing of
background signals. Normally, the signals are two-dimensional, so the 1x1 convolutions do
not make sense. In a ConvNets this is not the scenario as it operates in three-dimensional
volumes where as that the filters always extend through the total depth of the input volume.
For example, if the input is [32x32x3], then making 1x1 convolutions would be to make
three-dimensional products (since the input depth is 3 channels).

Extended Circumbances: A recent development introduces a hyperparameter to the

CONV layer called dilation. So far we have only discussed the CONV filters. However, it is
possible to have filters that have spaces between each cell, called dilation. As an example,
in a dimension, a filter w of size 3 would calculate in the input x the following: w [0] * x [0] + w
[1] * x [1] + w [2] * x [2] . This is dilation of 0. For dilation 1, the filter would calculate w [0] * x
[0] + w [1] * x [2] + w [2] * x [4]; In other words, there is a space of 1 between the
applications. This can be very useful in some environments to use together with filters with
expansion 0 because it allows you to combine the spatial information between the inputs
much more aggressively with fewer layers. For example, if you stack two CONV 3x3 layers
one on top of the other, you can convince yourself that the neurons in the 2nd layer are a
function of a 5x5 patch of the input (we could say that the effective receptive field of these
neurons is 5x5) . If we use dilated convolutions, this effective receptive field will grow much
faster.

Pooling Layer
It is common to periodically insert a Pooling layer between successive layers of Conv in a
ConvNet architecture. Pooling Layer works as independently in each depth sector of the
input and resizes it spatially manner by using the MAX operation there. The most common
form is a grouping layer with filters of size 2x2 applied with a stride of 2 descending samples
each cut of depth in the entrance by 2 along width and height, discarding 75% of the
activations. Each MAX operation in this case would take a maximum of 4 numbers (small
2x2 region in some depth segment). The depth dimension remains unchanged. More
generally, the grouping layer:
Accepts a volume size W1 × H1 × D1W1 × H1 × D1

Requires two hyperparameters:

or its spatial extension FF,

or the SS stride,

Produces a volume size W2 × H2 × D2W2 × H2 × D2 where:

or W2 = (W1-F) / S + 1W2 = (W1-F) / S + 1

or H2 = (H1-F) / S + 1H2 = (H1-F) / S + 1

or D2 = D1D2 = D1

Enter zero parameters since it calculates a fixed function of the input

40 | P a g e

Note that it is not common to use zero fill to group layers

It is worth noting that there are only two commonly observed variations of the maximum
grouping layer encountered in practice: A grouping layer with F = 3, S = 2F = 3, S = 2 (also
called overlap grouping), and most commonly F = 2, S = 2F = 2, S = 2. Gathering sizes with
larger receptive fields is too destructive.

General grouping. In addition to the maximum grouping, the grouping units can also perform
other functions, such as the average grouping or even the standard grouping L2. The
average grouping is often used historically, but has recently become out of date compared to
the maximum grouping operation, which has been shown to work best in practice.

Figure-39[17]

Pooling downsamples reduces the volume spatially, independently in each depth sector of
the input volume. Left: In this example, the size input volume [224x224x64] is combined with
the size of filter 2, step 2 on the size output volume [112x112x64]. Note that the depth of the
volume is preserved. Right: the most common sampling operation is maximum, which results

41 | P a g e

in the maximum accumulation, which is shown here with a step of 2. That is, each maximum
is taken in 4 numbers (small square of 2x2).

Backpropagation: Remember, from the backpropagation section, that the backward pass

for a max (x, y) operation has a simple interpretation, since it only routes the gradient to the
entry that had the highest value in the direct pass. Therefore, during the forward step of a
clustering layer it is common to track the maximum activation rate (sometimes also called
the switches) so that the gradient routing is efficient during inverse propagation.

Get rid of the commonwealth. Many people do not like the grouping operation and think we
can escape without it. In case of striving for Simplicity, all Convolutional Net proposes to
discard the grouping layer in favor of the architecture that only consists of repeated CONV
layers. To reduce the size of the representation, they suggest using a larger stride in the
CONV layer from time to time. It has also been found that discarding layers of pooling is
important for the training of good generative models, such as variational autoencoders (VAE)
or generative adversarial networks (GAN). It seems likely that future architectures present
very few or no grouping layers.

Normalization Layer

To use in ConvNet architecture, many types of normalization layers have been proposed
already. Sometimes with the intention of implementing inhibition schemes observed in the
biological brain. However, these layers have fallen out of favor since then because in
practice it has been shown that their contribution is minimal, if any. For several types of
normalizations, see the discussion in the cuda-convnet library API by Alex Krizhevsky.

Fully-connected layer

Neurons in a fully connected layer have full connections to all activations in the previous
layer, as seen in normal neural networks. Therefore, their activations can be calculated with
a multiplication of matrices followed by a displacement of bias. See the Neural Network
section of the notes for more information.

Converting FC layers to CONV layers

There is only difference between the FC and CONV layers is that the neurons in the CONV
layer are connected only to a local region at the input. However, the neurons in both layers
still compute dot products, so their functional form is identical. It is possible to convert
between FC and CONV layers:

For any CONV layer there is an FC layer that implements the same forwarding function. The
weighting matrix would be a large matrix that is mostly zero, except in certain blocks (due to
local connectivity) where the weights in many of the blocks are equal (due to the sharing of
parameters).

On the contrary, any FC layer can be converted to a CONV layer. For example, an FC layer
with K = 4096K = 4096 that is looking at an input volume of size 7 × 7 × 5127 × 7 × 512 can
be expressed equivalently as a CONV layer with F = 7, P = 0, S = 1, K = 4096F = 7, P = 0, S
= 1, K = 4096. In other words, we are setting the filter size to be exactly the size of the input
volume and, therefore, the output will be simply 1 × 1 × 40961 × 1 × 4096 since only one
depth column "fits" in the input volume. giving the same result as the initial FC layer.

42 | P a g e

FC-> CONV conversion. From these two conversions, the ability to convert an FC layer to a
CONV layer is particularly useful in practice. Let take an image of 224x224x3 of ConvNet
architecture, and after that uses a series of CONV layers and POOL layers to reduce the
image to a volume of activations of size 7x7x512. From there, an AlexNet uses two FC
layers of size 4096 and finally the last FC layers with 1000 neurons that calculate the class
scores. We can convert each of these three FC layers into CONV layers as described
above:

Replace the first FC layer that looks at the volume [7x7x512] with a CONV layer that uses a
filter size F = 7F = 7, giving an output volume [1x1x4096].

Replace the second FC layer with a CONV layer that uses a filter size F = 1F = 1, giving an
output volume [1x1x4096]

Replace the last FC layer in a similar way, with F = 1F = 1, giving final output [1x1x1000]

Each of these conversions could in practice involve the manipulation (e.g., remodeling) of
the WW weight matrix in each FC layer in CONV layer filters. With this conversion helps us
to slide the real ConvNet very appropriately in many spatial positions in a larger image, in a
single forward pass.

For example, if the image 224x224 gives a volume size [7x7x512], that is, a reduction of 32,
forwarding an image of size 384x384 through the converted architecture would give the
volume equivalent in size [12x12x512], since 384 / 32 = 12. To continue with the next 3
CONV layers that we just converted from the FC layers would now give the final size volume
[6x6x1000], since (12 - 7) / 1 + 1 = 6. Note that instead From a single vector of class size
scores [1x1x1000], we now get a full set of 6x6 class scores in the 384x384 image.

The evaluation of the original ConvNet (with FC layers) independently in 224x224 cultures of
the 384x384 image in 32-pixel strides gives an identical result to the forwarding of the
converted ConvNet once.

Of course, forwarding the converted ConvNet only one time is much more efficient than
iterating the original ConvNet in all those 39 locations, since the 39 evaluations share the
calculation. This trick is often used in practice to get better performance, where, for example,
it is common to change the size of an image to enlarge it, use a converted ConvNet to
evaluate class scores in many spatial positions and then average the scores of class.

Finally, what would happen if we wanted to efficiently apply the original ConvNet on the
image, but at a step smaller than 32 pixels? We could achieve this with multiple passes
forward. For example, note that if we wanted to use a 16-pixel stride we could do it by
combining the volumes received when converting ConvNet converted twice: first on the
original image and second on the image but with the image spatially changed by 16 pixels
along of width and height.

ConvNet Architectures

We have seen that Convolutional Networks are commonly composed of only three types of
layers: CONV, POOL (we assume Max pool unless otherwise indicated) and FC
(abbreviation of fully connected). We will also explicitly write the activation function RELU as
a layer, which applies non-linearity by elements. In this section we will discuss how these are
commonly stacked to form complete ConvNets.

Layer Patterns

43 | P a g e

The most common form of a ConvNet architecture is CONV-RELU layers, followed by with
POOL layers and repeats this pattern until the image has spatially merged to a small size. At
some point, it is common to make the transition to completely connected layers. The last
fully connected layer contains the output, like the class scores. In other words, the most
common ConvNet architecture follows the pattern:

INPUT -> [[CONV -> RELU] * N -> POOL?] * M -> [FC -> RELU] * G -> FC

where * indicates repetition and the POOL? indicates an optional grouping layer. In addition,
N> = 0 (and usually N <= 3), M> = 0, G> = 0 (and usually G <3). For example, here are
some common ConvNet architectures that you can see that follow this pattern:

INPUT -> FC, implements a linear classifier. Here N = M = K = 0.

INPUT -> CONV -> RELU -> FC

INPUT -> [CONV -> RELU -> POOL]*2 -> FC -> RELU -> FC. Here we see that there is a
single CONV layer between every POOL layer.

INPUT -> [CONV -> RELU -> CONV -> RELU -> POOL]*3 -> [FC -> RELU]*2 -> FC, here
we can see two CONV layers stacked before every POOL layer. This is generally a good
idea for larger and deeper networks, because multiple stacked CONV layers can develop
more complex features of the input volume before the destructive pooling operation.

It prefers a small CONV filter stack to a large CONV layer of the receptive field. Suppose you
stack three CONV 3x3 layers one on top of the other (with nonlinearities between them, of
course). Each neuron in the first CONV layer has a 3x3 pattern of the input volume, in this
arrangement. A neuron in the second layer CONV has a 3x3 view of the first CONV layer,
and therefore, by extension, a 5x5 view of the input volume. Similarly, a neuron in the third
layer CONV has a 3x3 view of the second CONV layer, and therefore a 7x7 view of the input
volume. Suppose that instead of these three layers of 3x3 CONV, we would only want to use
a single CONV layer with 7x7 receptive fields. These neurons would have a receptive field
size of input volume that is identical in spatial extent (7x7), but with several disadvantages.
First, the neurons would be computing a linear function on the input, while the three CONV
layer stacks contain nonlinearities that make their features more expressive. Second, if we
assume that all volumes have CC channels, then it can be seen that the single CONV 7x7
layer would contain C × (7 × 7 × C) = 49C2C × (7 × 7 × C) = 49C2 parameters, while the
three CONV 3x3 layers would only contain 3 × (C × (3 × 3 × C)) = 27C23 × (C × (3 × 3 × C))
= 27C2 parameters. Intuitively, stacking CONV layers with small filters instead of having a
CONV layer with large filters allows us to express more powerful characteristics of the input
and with fewer parameters. As a practical disadvantage, we may need more memory to
keep all the intermediate results of the CONV layer if we plan to do a new propagation.

Recent departures It should be noted that the conventional paradigm of a linear list of layers
has recently been questioned, in the Google Inception architectures and also in the current
residual networks of Microsoft Research Asia. Both (see the details below in the case
studies section) present more intricate and different connectivity structures.

In practice: use what works best in ImageNet. If you feel a little tired when thinking about
architectural decisions, you will be pleased to know that in 90% or more of the applications
you should not worry about this. I would like to summarize this point as "do not be a hero":
instead of shooting your own architecture for a problem, you should look at the architecture
that works best in ImageNet, download a pre-established model and fine-tune it in your data.

44 | P a g e

You should rarely train a ConvNet from scratch or design one from scratch. I also made this
point at the Deep Learning school.

Layer Sizing Patterns
So far we have omitted the mention of common hyperparameters used in each of the layers
in a ConvNet. First we will establish the common general rules for sizing the architectures
and then follow the rules with a discussion of the notation:

The input layer (which contains the image) should be divisible by 2 many times. Common
numbers include 32 (for example, CIFAR-10), 64, 96 (for example, STL-10) or 224 (for
example, Common ImageNet Connets), 384 and 512.

Conv layers should use small filters (eg 3x3 or maximum 5x5), using a step of S = 1S = 1,
and the most important thing is to fill the input volume with zeros so that the conv layer does
not disturb the spatial dimensions of the entrance. That is, when F = 3F = 3, the use of P =
1P = 1 will retain the original size of the input. When F = 5F = 5, P = 2P = 2. For a general
FF, it can be seen that P = (F-1) / 2P = (F-1) / 2 preserves the input size. If you must use
larger filter sizes (such as 7x7 or so), it is common to see this in the first conv layer that is
looking at the input image.

The group layers are responsible for reducing the resolution of the spatial dimensions of the
entrance. The most common configuration is to use the maximum combination with 2x2
receptive fields (that is, F = 2F = 2) and with a stride of 2 (that is, S = 2S = 2). Note that this
discards exactly 75% of the activations in an input volume (due to the reduction of sampling
in 2 in width and height). Another slightly less common configuration is to use 3x3 receptive
fields with a step of 2, but this does. It is unlikely to see receptive field sizes for the maximum
combination that are larger than three because the grouping is too slow and aggressive. This
usually leads to worse performance.

Reduce size headaches. The scheme presented above is nice because all the CONV layers
retain the spatial size of their input, while the POOL layers alone are in charge of sampling
the volumes spatially. In an alternative scheme where we use strides greater than 1 or do
not fill with zeroes the input in CONV layers, we would have to follow very carefully the input
volumes in the entire CNN architecture and make sure that all the steps and filters work. out
", and that the ConvNet architecture is wired nicely and symmetrically.

Why use stride of 1 in CONV?

Small steps work best in practice. In addition, as already mentioned, trench 1 allows us to

leave all the spatial descending sampling in the POOL layers, with the CONV layers

transforming the input volume only in depth.

Why use padding?

In addition to the aforementioned benefit of maintaining constant spatial sizes after CONV,
doing this actually improves performance. If the CONV layers did not fill the entries with
zeros and only make valid convolutions, then the size of the volumes would be reduced by a
small amount after each CONV, and the information on the edges would be "washed" too
quickly.
Commitment based on memory restrictions. In some cases (especially at the beginning of
the ConvNet architectures), the amount of memory can be accumulated very quickly with the
general rules presented above. For example, filtering a 224x224x3 image with three 3x3
CONV layers with 64 filters each and a fill 1 would create three size activation volumes

45 | P a g e

[224x224x64]. This can equate to a total of around 10 million activations process, or 72 MB
of memory. However, GPUs are usually downed by memory. In practice, people prefer to
engage only in the first CONV layer of the network. For example, a compromise could be to
use a first CONV layer with filter sizes of 7x7 and step of 2 (as seen in a ZF network). As
another example, an AlexNet uses filter sizes of 11x11 and step of 4.

6. Caffe Framework

Caffe provides a complete set of tools for training, testing, adjusting and implementing
models, with well-documented examples for all these tasks. As such, it is an ideal starting
point for researchers and other developers seeking to access state-of-the-art machine
learning. At the same time, it is probably the fastest available implementation of these
algorithms, so it is immediately useful for industrial implementation.

6.1. Highlights of Caffe

Modularity: The software is designed from the start to be as modular as possible, allowing

easy extension to new data formats, network layers and loss functions. Many of the layers
and loss functions are already implemented, and abundant examples show how they are
composed of trainable recognition systems for various tasks.

Separation and implementation: Caffe model are defined as configuration files used by
the buffer languages of protocol. Caffe also supports a directed acyclic graphics form of
network architectures. Upon instantiation, Caffe reserves exactly as much memory as
necessary for the network and abstracts from its underlying location on the host or GPU. The
change between a CPU and GPU implementation is exactly a function call.

Test coverage. Each module in Caffe has a test, and no new code is accepted in the project
without the corresponding tests. This allows rapid improvements and refactoring of the code
base, and imparts a welcome sense of reassurance to researchers using the code.

Links of Python and MATLAB: For rapid prototyping and the interface with the existing

research code, Caffe provides Python and MATLAB links. Both languages can be used to
build networks and classify entries. Python links also expose the solution module for easy
prototyping of new training procedures.

Pre-trained reference models: Caffe provides (for academic and non-commercial use, no

BSD license) reference models for visual tasks, including the "AlexNet" ImageNet model with
variations and the R-CNN detection model. More are scheduled for the launch. Caffe model
are defined as configuration files used by the buffer languages of protocol. Caffe supports a
directed acyclic graphics form of network architectures. Upon instantiation, Caffe reserves
exactly as much memory as necessary for the network and abstracts from its underlying
location on the host or GPU. The change between a CPU and GPU implementation is
exactly a function call.
Test coverage. Each module in Caffe has a test, and no new code is accepted in the project
without the corresponding tests. This allows rapid improvements and refactoring of the code

46 | P a g e

base, and imparts a welcome sense of reassurance to researchers using the code.

Table 1: Comparison of popular deep learning frameworks[2]

7. Euclidean Distance

The Euclidean distance is the simple distance of straight line between two points on a
Euclidean space. Then the Euclidean space becomes a metric space with this distance. The

associated norm is called the Euclidean norm. Older literature refers to the metric as

Pythagorean metric.

The Euclidean distance between points p and q is the length of the line segment that

connects them In Cartesian coordinates, if p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn)
are two points in euclidean e-space, then the distance (d) of p to q, or q to p is given by the
formula of Pythagoras:

The position of a point in a Euclidean n-space is a Euclidean vector. Then, p and q are
Euclidean vectors, starting from the origin of space, and their suggestions indicate two
points. The Euclidean norm, or Euclidean length, or the magnitude of a vector measures the
length of the vector:

where as the last equation includes the dot product.

A vector can be stated as a line segment started from the origin of the Euclidean space to
vector point. If we consider that its length is really the distance from its tail to its tip, then the
Euclidean norm of a vector is only a special case of Euclidean distance, whereas the
Euclidean distance between its tail and its tip.
The distance between points p and q can have an address (for example, from p to q), so it
can be represented by another vector, given by

https://en.wikipedia.org/wiki/Straight_line
https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Straight_line
https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Norm_%28mathematics%29
https://en.wikipedia.org/wiki/Norm_%28mathematics%29#Euclidean_norm
https://en.wikipedia.org/wiki/Dot_product

47 | P a g e

One dimension

In Euclidean geometry, setting two points on a line and choosing one to be the origin to
established metric. The length of the line segment between these points defines the unit of
distance and the direction from the origin to the second point is defined as the positive
direction. This line segment can be translated along the line to construct longer segments
whose lengths correspond to multiples of the distance of the unit. In this way, real numbers
can be associated with points on the line (such as the distance from the origin to the point)
and these are the Cartesian coordinates of the points on what can now be called the real
line. As an alternative way to set the metric, instead of choosing two points on the line,
choose a point to be the origin, a unit of length, and an address along the line to call
positive. The second point is determined uniquely as the point on the line that is at a
distance from a positive unit of the origin.
The distance between any two points on the real line is the absolute value of the numerical
difference of its coordinates. It is common to identify the name of a point with its Cartesian
coordinate. Therefore, if p and q are two points on the real line, then the distance between
them is given by:

Two dimensions

In the Euclidean plane, if p = (p1, p2) and q = (q1, q2) then the distance is given by

Three dimensions

In three-dimensional Euclidean space, the distance is

n dimensions

In general, for an n-dimensional space, the distance is

8. Change Point Analysis

Abrupt changes respect of time series is known as change point and detecting this point is

Change point detection. The change point detection is applied in weather forecasting,

detecting bank transaction fraud, image analyses, and classified data in data analysis,

human activity and medical science. Many methodologies are applied to detect change point

in time series. Since all methods are capturing Change Point, it is difficult to detect which

48 | P a g e

method is appropriate for a particular field. So, that we are learning and getting the basic

concept behind those methods.

There are many questions that a researcher can take into account when performing a
change point analysis. Some of these include:

 Has a change occurred?

 If yes, where is the change?

 What is the difference between the data of previous and subsequent change?
o This may be the exchange rate
o and / or the values of the parameters before and after the change.

 What is the probability that a change has occurred?

 How safe are we from the location of the change point?

 How many changes have occurred (+ all of the above for each change)?

 Why has there been a change?

Here we are going to discuss about E-divisive, Multirank, KCP and DeCon methods.

8.1. E-divisive

E-divisive detects change points by quantifying how different are the characteristic functions

of the distributions of later segments of the time series. In fact, the characteristic functions

uniquely describe a probability distribution, the changes in the distribution of characteristic

distribution of the signal. This method combines the measure of multivariate divergence.

 First we discuss multivariate divergence measure here.

8.1.1 Measuring Differences in Multivariate Distributions

For complex-valued functions φ(·), the complex conjugate of φ̅ is denoted by φ, and the

absolute square |φ|2 is defined as φφ̅̅ ̅̅ . The Euclidean norm of x ∈ Rd is |x|d, or simply |x|

when there is no ambiguity. A primed variable such as Xj is an independent copy of X; that

is, X and Xj are independent and identically distributed.

 …. (i)

In which w(t) denotes here an arbitrary positive weight function, for which the above integral

exists. We use the following weight function,

 ….(ii)

for some fixed constant α ∈ (0, 2). Then, if E|X|α, E|Y |α < ∞, a characteristic function

based divergence measure may be defined as

49 | P a g e

… (iii)

Suppose X, Xj , Fx and Y, Y j Fy, and that X, Xj, Y, and Y j are mutually independent. If

E|X|α, E|Y |α < ∞, then we may employ an alternative divergence measure based on

Euclidean distances,

 ..(iv)

Lemma 1, for any pair of independent random vectors X, Y ∈ Rd, and for any α ∈ (0, 2), if

E(|X|α + |Y |α) < ∞, then E(X, Y ; α) = D(X, Y ; α), E(X, Y ; α) ∈ [0, ∞), and E(X, Y ; α) = 0 if

and only if X and Y are identically distributed.

The Lemma 1 motivates a simple empirical divergence measure for multivariate

distributions based on a U -statistics. Let Xn = {Xi : i = 1, . . . , n} and Y m = {Yj : j = 1, . . . ,

m} be independent iid samples from the distribution of X, Y ∈ Rd, respectively, such that

E|X|α, E|Y |α < ∞ for some α ∈ (0, 2). Then an empirical divergence measure analogous to

Equation (4) may be defined as

….(v)

Additionally, under the null hypothesis of equal distributions, i.e., E(X, Y ; α) = 0, we note that

2

mn
E (Xn, Y m; α) converges in distribution to a non-degenerate random variable as m ∧ n →

∞.

Further, under the alternative hypothesis of unequal distributions, i.e., E(X, Y ; α) > 0, we

note that mn E (Xn, Y m; α) → ∞ almost surely as m ∧ n → ∞. These asymptotic Estimating

the Location of a Change Point

 ….(vi)

8.1.2. KCP

50 | P a g e

The Kernel Change Point (KCP) method proposed for detects change points by evaluating

how similar or dissimilar the scores at the observed time points are to each other. To this

end, the observations are transformed to similarities by means of a kernel function.

1. Compute pairwise similarities using a Gaussian kernel function.

 For each pair of observations, X i and X j , the pairwise similarity is computed using a

Gaussian kernel function,

 … (vii)

The similarities take on values close to 0 when X i and X j are distant and values close to 1

when X i and X j are similar. The bandwidth, h, is a smoothing parameter that indicates how

strict one is when deciding if two observations are similar. Here we determined the

bandwidth using the procedure of Arlot et al.

1. For different numbers of change points K, minimize the total intra-phase scatter to

detect their location.

For varying numbers of change points, K = 0, …, K max , KCP minimizes the following

criterion across all possible change point locations (τ 1, τ 2, …, τ K):

Where, V̂k is the intra-phase scatter. V̂k measures how homogeneous the corresponding

phase is,

8.1.3. Multirank

Multirank makes use of a homogeneity statistic. Multirank only takes the rank order of the

scores per variable into account. The method consists of two steps.

1. Check whether the time series contains at least one significant change point.

Considering all possible τ-values, the sequence is divided into two

phases X 1 : τ and X τ + 1 : n . For each τ-value, the dissimilarity of these phases is

determined by computing the following homogeneity statistic

51 | P a g e

 … (viii)

Where, Σ ̂is the empirical covariance matrix of the rank orders of the scores, and R̅ is a
phase specific vector containing deviations of the observed mean phase ranks from the
expected mean phase rank if the whole sequence is homogeneous. In case of homogeneity,
the rank order of a score is completely random and, thus, the expected mean rank within a

phase equals
n+1

2
. However, if a change point segments the sequence into phases with

different distributions, the rank orders would no longer be random but would depend on the
distributions. Consequently, deviations from the middle phase are classified from the
expected range under homogeneity, and therefore also T, would be large. Therefore, to
decide whether the time series contains at least one change point, the importance of the
highest T value is tested by computing the associated asymptotic p value under the
assumption of homogeneity. Details on this calculation, which is based on the Bessel
functions of the first type and the gamma function.

Equations below shows the T values that were obtained for our illustrative example using

different values τ, and indicates that τ = 25 gives the highest T value. This implies a possible

point of change in the twenty-sixth observation. Specifically, the maximum homogeneity

statistic is equal to 40.27, since

and

In Step 1, R̅2 is always equal to – R̅1, since we are looking for one change point. When

considering multiple change points, this property will of course not hold. The associated p-

52 | P a g e

value for the maximal T̂ is 1.38 × 10− 7, confirming that the change point, T = 26, is highly

significant. Henceforward, we will denote the maximal T̂ as T̂max to decide on the

number of change points and on their location.

 If the change point obtained in Step 1 is found to be significant, multiple change point

detection is conducted by computing the generalized form of the homogeneity statistic in

Eq. (iii), where Kdenotes the number of change points, τ 0 = 0 and τ K + 1 = n:

 (ix)

8.1.4. DeCon

DeCon based detection of the point of change in the identification of outliers using robust

statistics. The method slides a time window of size W along the time series by sequentially

deleting the first time point in the window and adding a new observation as the last time

point. By window, it is determined if the last point of time is an outlier with respect to the

distribution of the other time points in the window. If the latter is the case for multiple

consecutive windows, this indicates that the observations that are added to the window may

come from a different distribution and, therefore, that a change point occurred. Specifically,

DeCon consists of the following four steps.1.

Apply Robust PCA in each time window and determine “outlyingness” of the last time point.

 By time window, DeCon calculates a robust multivariate center, μ w, and a covariance

matrix, Σ w, to determine the distribution of regular observations (standardized by variable

since we are interested in correlations instead of covariances), and generates a peripheral

measure for the last time point of the window. To this end, the robust principal components

approach (ROBPCA) of Hubert et al. it is used [24]. In this document, we keep all the main

components to avoid the question of how to choose the optimal number of components.1

Since we use all the components, the measure of distance is the so-called distance of score,

which is equal to the Mahalanobis distance between the last time point X is the last and the

robust specific center of the window μ w:

 (x)

9. Problems with previous approaches

 Can’t distinguish shot-breaks with

53 | P a g e

 Cannot apply to all types of video streams.

 Fast object motion or Camera motion.

 Fast Illumination changes

 Reflections from glass, water

 Flash photography

 Fails to detect long and short gradual transitions

9.1. Experiment Details
9.1.1. Proposed approach
Video segment detection can be determined online and offline both ways. Here we proposed
a new and efficient way of segment detection online/automatic. A video is consists of
different segment of frames. However, each segment can be classified any of the following,
i) Sharp/Hard transition
ii) Gradual transition and
iii) No transition
Here, we used sliding window technique to do the image classification. A sliding window is a
rectangular shape region of a fixed width and height that “slides” across an image. We can
do that iteratively for rest of the images also.
 We have prepared a learning DB with millions of images. But we did the experiment on a
set of sample 500(five hundreds) frames(prepared manually with a mix-up of hard and
gradual cuts). We used sliding window technique on those 500 frames to detect Hard-cuts
among those.

To make the proposed technique more wide and efficient we introduced a custom CNN
model, created by us only. This CNN consists of five convolutional layers(refer the table
below). There all the convolutional layers are followed by ReLU(Rectified Linear Unit). Also,
there are three fully-connected layers FC6, FC7 and FC8. Those are containing 4096
neurons each.

We used Caffe to extract and prepare image DB as learning data set. Also the code
development of Change Point Detection algorithm is done partially.

Layer Kernel Followed by

Data label

Conv1 (11x4x0x3) x 96 ReLU

Pool1

Conv2 (5 x 1 x 2 x 96) x 256 ReLU

Pool2

Conv3 (3 x 1 x 1 x 256) x 384 ReLU

Conv4 (3 x 1 x 1 x 384) x 384 ReLU

Conv5 (3 x 1 x 1 x 384) x 256 ReLU

Pool5

FC6 4096 ReLU

Dropout

FC7 4096 ReLU

Dropout

FC8 1000 Dropout

Softmax Label

54 | P a g e

Table 2: Proposed custom CNN model

Our experiment followed the steps mentioned below,

Step 1: Extract video and prepare image DB(Train & Test data set)

Identified any video format(e.g. mp4, .mpg, .wav etc.)
Extracted video into several frames.
Created Caffe model(CNN) for preparing training data set.
Prepared train data set by creating mean image file and .lmbd file.
Extracting feature from another video frames to prepare test data set and saved in a file.

Step 2: Calculate distance between two images by Euclidean Distance algorithm
Used Euclidean distance algorithm to measure distance between two feature points of a
particular frame.
Apply Log(10) on the output of the above to get the scalable values.
Generate graphical representation of the distance data.
Compare with a manually prepared tabular data(data of 500 frames) of Hard-cut and
Gradual-cut detection with the above graph. To determine the accuracy.

Step 3: Apply Change Point Detection algorithm to determine the Hard-cut
automatically
Apply Change Point Detection (CPD) algorithm on the data generated by Euclidean Distance
program.
Generating graphical representation of CPD data by a standard available tool.
Compare with a manually prepared tabular data (data of 500 frames) of Hard-cut and
Gradual-cut detection and the graph generated by Euclidean distance program with the
above graph. To determine the accuracy and efficiency.

We did the above experiment steps for sample 500 frames. In future we will do the
continuation of the above steps for next set of test data frames.

9.1.2. Source Code

<<caffe_feature_extractor.py>>

import numpy as np
import os, sys, getopt

Main path to your caffe installation
caffe_root = 'caffe/'

Model prototxt file : (Model definition: A prototxt file containing the model definition (like the one we
had earlier))
model_prototxt = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'

Model caffemodel file (Learning algorithm: A prototxt file describing the parameters for the
stochastic gradient algorithm. This is called the solver file.)
model_trained = caffe_root +
'examples/imagenet/training_05.05.18/model_train_anni005_iter_1000.caffemodel'

55 | P a g e

Path to the mean image (used for input processing)(Mean image: We need to compute the mean
image of the training dataset)
#mean_path = caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy'
mean_path = caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy'

Name of the layer we want to extract

layer_name = 'fc8'
sys.path.insert(0, caffe_root + 'python')
import caffe

def main(argv):
inputfile = ''
outputfile = ''

try:
opts, args = getopt.getopt(argv,"hi:o:",["ifile=","ofile="])
except getopt.GetoptError:
print ('caffe_feature_extractor.py -i Wildlife.wmv -o hi.txt')
sys.exit(2)

for opt, arg in opts:
if opt == '-h':
print ('caffe_feature_extractor.py -i Wildlife.wmv -o hi.txt')
sys.exit()
elif opt in ("-i"):
inputfile = arg
elif opt in ("-o"):
outputfile = arg

print ('Reading images from "', inputfile)
print ('Writing vectors to "', outputfile)

Setting this to CPU, but feel free to use GPU if you have CUDA installed
 caffe.set_mode_cpu()
 # Loading the Caffe model, setting preprocessing parameters
 net = caffe.Classifier(model_prototxt, model_trained,
 mean=np.load(mean_path).mean(1).mean(1),
 channel_swap=(2,1,0),
 raw_scale=255,
 image_dims=(256, 256))

Processing one image at a time, printint predictions and writing the vector to a file
 with open(inputfile, 'r') as reader:
 with open(outputfile, 'wb') as writer:
 writer.truncate()
 for image_path in reader:
 image_path = image_path.strip()
 input_image = caffe.io.load_image(image_path)
 prediction = net.predict([input_image], oversample=False)
 #print (os.path.basename(image_path), ' : ' , labels[prediction[0].argmax()].strip() , ' (',
prediction[0][prediction[0].argmax()] , ')')
 np.savetxt(writer, net.blobs[layer_name].data[0].reshape(1,-1), fmt='%f')

if __name__ == "__main__":
 main(sys.argv[1:])

56 | P a g e

<<euclidist.py>>

#!/usr/bin/python2.7

#import file
import numpy as np
import sys
import math
import collections
#import matplotlib.pyplot as plt
from scipy.spatial import distance

#count number of line in file
num_lines = sum(1 for line in open('output_test_new_anni005_9.txt'))
#initialise two list , 1st for current image , 2nd fr previous image
list1 = list()
list2 = list()

file = open("df_anni005_9.txt", "a")
for i in range(0,num_lines):
 #print ('i =',i)
 frame=i
 prv_frame=frame-1
 if prv_frame != 0:

 with open('output_test_new_anni005_9.txt') as f:
 for j, line in enumerate(f,1):
 if j == frame: #here frame is line number
 break
 #for save perticular line caontainting strng
 with open('output_test_new_anni005_9.txt') as f:
 for j, pre_line in enumerate(f,1):
 #here prv_frame is line number
 if j == prv_frame:
 break

 list1 = line.split()
 list2 = pre_line.split()

 length = len(list1)
 print("length= ",length)

 aList = list()
 bList = list()
 #string to float conversion
 for p in range(0,length):
 u = float(list1[p])
 v = float(list2[p])
 # new list containg float type data
 aList.append(u);
 # new list containg float type data
 List.append(v);
 # caluate euclidean distance beween two list
 dist = distance.euclidean(aList,bList)

 #log of difrence bewteen two images
 # log of negative or Zero value not allow
 if dist > 0.0:
 df_file_print_value=str(math.log(dist))
 file.write(df_file_print_value)

57 | P a g e

 file.write('\n')

file.close()

9.1.3.Proposed custom CNN model

9.1.4. Experimental Result

We used as many as data set of 500 frames to do the experiment. The frames are contained
many video clips and from various situations. The output from our proposed algorithm were
good and it was able to detect almost all cuts. We observed from the CPD graph that the two
cuts are distinguished automatically as two high peaks. Our proposed approach that use
Euclidean distance and Change Point Detection algorithm with Caffe to detect video shot
boundary. The overall detection percent is almost accurate and can be applied for all types
of video data.

The below data prepared with visually identified cuts manually on the first 500 frames to
compare with the Euclidean Distance output followed by Change Point Detection graph to
measure accuracy of our proposed approach.

Frame No. Frame Name Cut Euclidean Distance

1 anni001_1.jpg 2.372311149

2 anni001_2.jpg 2.472317729

3 anni001_3.jpg 3.292649839

4 anni001_4.jpg 3.008475481

5 anni001_5.jpg 3.091585992

6 anni001_6.jpg 3.083551949

7 anni001_7.jpg 3.196543483

8 anni001_8.jpg 2.990283976

9 anni001_9.jpg 2.686553106

10 anni001_10.jpg 2.677382687

11 anni001_11.jpg 2.546326467

12 anni001_12.jpg 2.275234168

58 | P a g e

13 anni001_13.jpg 2.645647537

14 anni001_14.jpg 2.534478245

15 anni001_15.jpg 2.425457159

16 anni001_16.jpg 2.427176684

17 anni001_17.jpg 2.683631753

18 anni001_18.jpg 2.584035578

19 anni001_19.jpg 2.328441865

20 anni001_20.jpg 2.618888173

21 anni001_21.jpg 1.608908404

22 anni001_22.jpg Hard cut 4.59233453

23 anni001_23.jpg 3.277518624

24 anni001_24.jpg 2.287889863

25 anni001_25.jpg 1.468299913

26 anni001_26.jpg 1.346178963

27 anni001_27.jpg 3.213042358

28 anni001_28.jpg 1.81430212

29 anni001_29.jpg 2.3486974

30 anni001_30.jpg 2.199510776

31 anni001_31.jpg Gradual 1.766347775

32 anni001_32.jpg Gradual 2.914009321

33 anni001_33.jpg Gradual 2.128705341

34 anni001_34.jpg Gradual 2.915136852

35 anni001_35.jpg Gradual 2.765753878

36 anni001_36.jpg Gradual 3.162491566

37 anni001_37.jpg Gradual 2.079885362

38 anni001_38.jpg Gradual 2.919569166

39 anni001_39.jpg Gradual 2.308416366

40 anni001_40.jpg Gradual 3.019915858

41 anni001_41.jpg Gradual 2.117173293

42 anni001_42.jpg Gradual 2.468202951

43 anni001_43.jpg Gradual 2.676650214

44 anni001_44.jpg Gradual 2.501996021

45 anni001_45.jpg Gradual 3.292066244

46 anni001_46.jpg Gradual 2.723324978

47 anni001_47.jpg Gradual 2.607081764

48 anni001_48.jpg Gradual 2.946700328

49 anni001_49.jpg Gradual 3.478223503

50 anni001_50.jpg Gradual 2.60265213

51 anni001_51.jpg Gradual 2.422435248

52 anni001_52.jpg Gradual 2.722859268

53 anni001_53.jpg Gradual 3.807084156

54 anni001_54.jpg Gradual 2.484325919

55 anni001_55.jpg Gradual 2.554507882

56 anni001_56.jpg Gradual 2.814518037

57 anni001_57.jpg Gradual 2.635845012

58 anni001_58.jpg Gradual 3.160277832

59 anni001_59.jpg Gradual 2.35751777

59 | P a g e

60 anni001_60.jpg Gradual 3.039805922

61 anni001_61.jpg 1.875702485

62 anni001_62.jpg 2.818319634

63 anni001_63.jpg 1.709959607

64 anni001_64.jpg 1.961265361

65 anni001_65.jpg 2.304118512

66 anni001_66.jpg 2.268603176

67 anni001_67.jpg 3.011075958

68 anni001_68.jpg 2.139190293

69 anni001_69.jpg 2.912950989

70 anni001_70.jpg 2.424098782

71 anni001_71.jpg 2.939618561

72 anni001_72.jpg 2.040064726

73 anni001_73.jpg 2.164802965

74 anni001_74.jpg 2.853242306

75 anni001_75.jpg 2.94785229

76 anni001_76.jpg 1.574795553

77 anni001_77.jpg 2.010116893

78 anni001_78.jpg 3.009430543

79 anni001_79.jpg 2.238432241

80 anni001_80.jpg 2.997192861

81 anni001_81.jpg 1.96341512

82 anni001_82.jpg 2.737577768

83 anni001_83.jpg 2.064766462

84 anni001_84.jpg 2.678618999

85 anni001_85.jpg 1.710117954

86 anni001_86.jpg 2.114387792

87 anni001_87.jpg 2.586694238

88 anni001_88.jpg 2.887509345

89 anni001_89.jpg 1.501170273

90 anni001_90.jpg 1.759680405

91 anni001_91.jpg 2.545562561

92 anni001_92.jpg 2.078365156

93 anni001_93.jpg 2.467979355

94 anni001_94.jpg 2.049099989

95 anni001_95.jpg 2.639517466

96 anni001_96.jpg 2.157615009

97 anni001_97.jpg 2.271067626

98 anni001_98.jpg 1.626891914

99 anni001_99.jpg 2.061541127

100 anni001_100.jpg 2.637538338

101 anni001_101.jpg Gradual 2.037270321

102 anni001_102.jpg Gradual 2.828735749

103 anni001_103.jpg Gradual 2.262074936

104 anni001_104.jpg Gradual 2.591043238

105 anni001_105.jpg Gradual 2.040332379

106 anni001_106.jpg Gradual 2.390193177

60 | P a g e

107 anni001_107.jpg Gradual 1.677438875

108 anni001_108.jpg Gradual 1.84501546

109 anni001_109.jpg Gradual 2.576320622

110 anni001_110.jpg Gradual 2.92903641

111 anni001_111.jpg Gradual 2.470384973

112 anni001_112.jpg Gradual 2.414413622

113 anni001_113.jpg Gradual 2.847917678

114 anni001_114.jpg Gradual 2.607051655

115 anni001_115.jpg Gradual 2.897224676

116 anni001_116.jpg Gradual 2.918955478

117 anni001_117.jpg Gradual 2.80967482

118 anni001_118.jpg Gradual 2.140603217

119 anni001_119.jpg Gradual 3.051608433

120 anni001_120.jpg Gradual 2.984702314

121 anni001_121.jpg Gradual 3.101980611

122 anni001_122.jpg Gradual 3.152897768

123 anni001_123.jpg Gradual 3.205286507

124 anni001_124.jpg Gradual 3.102123972

125 anni001_125.jpg Gradual 2.731059328

126 anni001_126.jpg Gradual 3.195172172

127 anni001_127.jpg Gradual 3.274224193

128 anni001_128.jpg Gradual 2.759603423

129 anni001_129.jpg Gradual 2.964772462

130 anni001_130.jpg Gradual 3.290638678

131 anni001_131.jpg Gradual 3.142344008

132 anni001_132.jpg Gradual 2.650602808

133 anni001_133.jpg Gradual 3.129092004

134 anni001_134.jpg Gradual 3.046432328

135 anni001_135.jpg 3.132325632

136 anni001_136.jpg 2.632660087

137 anni001_137.jpg 2.831439151

138 anni001_138.jpg 2.936047985

139 anni001_139.jpg 2.940735758

140 anni001_140.jpg 2.864244205

141 anni001_141.jpg 1.716812703

142 anni001_142.jpg 2.754905683

143 anni001_143.jpg 2.879451241

144 anni001_144.jpg 3.100254558

145 anni001_145.jpg 2.43382038

146 anni001_146.jpg 2.85575177

147 anni001_147.jpg 2.880969742

148 anni001_148.jpg 2.703234085

149 anni001_149.jpg 2.767660791

150 anni001_150.jpg 1.652258482

151 anni001_151.jpg 2.903561407

152 anni001_152.jpg 2.890983316

153 anni001_153.jpg 2.562448527

61 | P a g e

154 anni001_154.jpg 1.675581158

155 anni001_155.jpg 2.519680089

156 anni001_156.jpg 2.671782734

157 anni001_157.jpg 2.879550763

158 anni001_158.jpg 3.19177633

159 anni001_159.jpg 2.358425252

160 anni001_160.jpg 2.537391953

161 anni001_161.jpg 2.605561721

162 anni001_162.jpg 2.502102595

163 anni001_163.jpg 1.999379215

164 anni001_164.jpg 2.713181991

165 anni001_165.jpg 2.701987599

166 anni001_166.jpg 2.677063935

167 anni001_167.jpg 1.333125398

168 anni001_168.jpg 2.659251638

169 anni001_169.jpg Hard cut 4.147412158

170 anni001_170.jpg 2.340463684

171 anni001_171.jpg 2.334040049

172 anni001_172.jpg 2.148572166

173 anni001_173.jpg 2.189329431

174 anni001_174.jpg 2.525779676

175 anni001_175.jpg 2.209203903

176 anni001_176.jpg 2.286863783

177 anni001_177.jpg 1.858857809

178 anni001_178.jpg 2.083425053

179 anni001_179.jpg 2.590954559

180 anni001_180.jpg 2.250517734

181 anni001_181.jpg 1.472130203

182 anni001_182.jpg 1.663879673

183 anni001_183.jpg 1.922767911

184 anni001_184.jpg 2.221062751

185 anni001_185.jpg 2.151477698

186 anni001_186.jpg 2.252025301

187 anni001_187.jpg 2.300662441

188 anni001_188.jpg 2.066069344

189 anni001_189.jpg 2.272311232

190 anni001_190.jpg 1.593685018

191 anni001_191.jpg 2.154367557

192 anni001_192.jpg 1.852209914

193 anni001_193.jpg 2.160617184

194 anni001_194.jpg 1.548258308

195 anni001_195.jpg Gradual 2.076659122

196 anni001_196.jpg Gradual 1.985669505

197 anni001_197.jpg Gradual 1.928019176

198 anni001_198.jpg Gradual 2.138688441

199 anni001_199.jpg Gradual 1.500894935

200 anni001_200.jpg Gradual 2.458917429

62 | P a g e

201 anni001_201.jpg Gradual 2.195483596

202 anni001_202.jpg Gradual 2.034488418

203 anni001_203.jpg Gradual 1.713843435

204 anni001_204.jpg Gradual 2.29696519

205 anni001_205.jpg Gradual 2.087086247

206 anni001_206.jpg Gradual 2.207304464

207 anni001_207.jpg Gradual 2.529495068

208 anni001_208.jpg Gradual 2.31011824

209 anni001_209.jpg Gradual 2.566313904

210 anni001_210.jpg Gradual 2.330319092

211 anni001_211.jpg Gradual 2.452178364

212 anni001_212.jpg Gradual 2.301886957

213 anni001_213.jpg Gradual 2.61262965

214 anni001_214.jpg Gradual 2.877291339

215 anni001_215.jpg Gradual 2.447600416

216 anni001_216.jpg Gradual 2.68785057

217 anni001_217.jpg Gradual 2.923446921

218 anni001_218.jpg Gradual 3.128421377

219 anni001_219.jpg Gradual 3.215979284

220 anni001_220.jpg Gradual 2.805527558

221 anni001_221.jpg Gradual 3.567243138

222 anni001_222.jpg Gradual 3.033979689

223 anni001_223.jpg Gradual 2.788983576

224 anni001_224.jpg Gradual 2.636418607

225 anni001_225.jpg Gradual 2.92239941

226 anni001_226.jpg Gradual 2.654488178

227 anni001_227.jpg Gradual 2.933049668

228 anni001_228.jpg Gradual 3.026882014

229 anni001_229.jpg Gradual 3.019275576

230 anni001_230.jpg Gradual 2.736718337

231 anni001_231.jpg Gradual 2.860627072

232 anni001_232.jpg Gradual 2.56626739

233 anni001_233.jpg Gradual 2.005917123

234 anni001_234.jpg Gradual 2.659270687

235 anni001_235.jpg Gradual 3.110597221

236 anni001_236.jpg 2.944252075

237 anni001_237.jpg 2.223209163

238 anni001_238.jpg 3.303311044

239 anni001_239.jpg Hard cut 4.701153093

240 anni001_240.jpg 2.584570166

241 anni001_241.jpg 2.813803063

242 anni001_242.jpg 2.770093364

243 anni001_243.jpg 2.915722563

244 anni001_244.jpg 2.76197826

245 anni001_245.jpg 2.871506267

246 anni001_246.jpg 2.649379311

247 anni001_247.jpg 2.983792542

63 | P a g e

248 anni001_248.jpg 2.63886502

249 anni001_249.jpg 2.535198604

250 anni001_250.jpg 2.935642901

251 anni001_251.jpg 2.701523238

252 anni001_252.jpg 3.248673289

253 anni001_253.jpg 3.0025607

254 anni001_254.jpg 2.587986152

255 anni001_255.jpg 2.522247542

256 anni001_256.jpg 2.721716681

257 anni001_257.jpg 2.97171513

258 anni001_258.jpg Gradual 3.324338853

259 anni001_259.jpg Gradual 2.831616718

260 anni001_260.jpg Gradual 3.148719376

261 anni001_261.jpg Gradual 3.019624462

262 anni001_262.jpg Gradual 2.937183512

263 anni001_263.jpg Gradual 3.011531027

264 anni001_264.jpg Gradual 3.454267224

265 anni001_265.jpg Gradual 3.247352974

266 anni001_266.jpg Gradual 3.086704992

267 anni001_267.jpg Gradual 3.106781883

268 anni001_268.jpg Gradual 3.247654688

269 anni001_269.jpg Gradual 3.411258337

270 anni001_270.jpg Gradual 3.524932015

271 anni001_271.jpg Gradual 3.880762245

272 anni001_272.jpg Gradual 3.141304068

273 anni001_273.jpg Gradual 3.182835021

274 anni001_274.jpg Gradual 2.761760597

275 anni001_275.jpg Gradual 3.046690797

276 anni001_276.jpg Gradual 2.837515227

277 anni001_277.jpg Gradual 3.169517264

278 anni001_278.jpg Gradual 3.107585955

279 anni001_279.jpg Gradual 2.520286612

280 anni001_280.jpg Gradual 2.518530961

281 anni001_281.jpg Gradual 2.772013925

282 anni001_282.jpg Gradual 2.744363623

283 anni001_283.jpg Gradual 2.603922433

284 anni001_284.jpg Gradual 2.92508199

285 anni001_285.jpg Gradual 3.085840884

286 anni001_286.jpg 2.656820798

287 anni001_287.jpg Hard cut 3.980587018

288 anni001_288.jpg 2.658011324

289 anni001_289.jpg 2.763673596

290 anni001_290.jpg 2.633128989

291 anni001_291.jpg 4.513672839

292 anni001_292.jpg 4.336782323

293 anni001_293.jpg 2.120078046

294 anni001_294.jpg 3.524311777

64 | P a g e

295 anni001_295.jpg 3.305471463

296 anni001_296.jpg 3.349304773

297 anni001_297.jpg 3.457564341

298 anni001_298.jpg 1.906911403

299 anni001_299.jpg 3.224323135

300 anni001_300.jpg 3.223893284

301 anni001_301.jpg 3.521114741

302 anni001_302.jpg 3.736766198

303 anni001_303.jpg 2.289843457

304 anni001_304.jpg 3.450125513

305 anni001_305.jpg 3.383423063

306 anni001_306.jpg 3.290757089

307 anni001_307.jpg 3.339556711

308 anni001_308.jpg 1.832907185

309 anni001_309.jpg 3.230362434

310 anni001_310.jpg 3.345363697

311 anni001_311.jpg 3.475629748

312 anni001_312.jpg 3.321058267

313 anni001_313.jpg 1.56414426

314 anni001_314.jpg 3.465978968

315 anni001_315.jpg 3.534825832

316 anni001_316.jpg 3.445752338

317 anni001_317.jpg 3.320346553

318 anni001_318.jpg 1.972777532

319 anni001_319.jpg Hard cut 4.666694186

320 anni001_320.jpg 1.750252109

321 anni001_321.jpg 2.183243127

322 anni001_322.jpg 2.362855551

323 anni001_323.jpg 2.313705135

324 anni001_324.jpg 2.195096966

325 anni001_325.jpg 1.897261255

326 anni001_326.jpg 1.732360402

327 anni001_327.jpg 1.723206658

328 anni001_328.jpg 1.552562322

329 anni001_329.jpg 1.220062188

330 anni001_330.jpg 1.380062188

331 anni001_331.jpg 2.684653144

332 anni001_332.jpg 2.986197699

333 anni001_333.jpg 3.039407139

334 anni001_334.jpg Hard cut 4.796156191

335 anni001_335.jpg 2.567391351

336 anni001_336.jpg 3.119526007

337 anni001_337.jpg 2.780154007

338 anni001_338.jpg 2.90756686

339 anni001_339.jpg 2.829858299

340 anni001_340.jpg 2.629474746

341 anni001_341.jpg 2.800379968

65 | P a g e

342 anni001_342.jpg 2.983239113

343 anni001_343.jpg 2.836368251

344 anni001_344.jpg 1.887336265

345 anni001_345.jpg 2.817252387

346 anni001_346.jpg 2.486828932

347 anni001_347.jpg 2.469392777

348 anni001_348.jpg 2.758954434

349 anni001_349.jpg 2.417125631

350 anni001_350.jpg 2.615312412

351 anni001_351.jpg 2.561398891

352 anni001_352.jpg 2.459860697

353 anni001_353.jpg 2.596329231

354 anni001_354.jpg 2.317900357

355 anni001_355.jpg Hard cut 4.519323829

356 anni001_356.jpg 3.183719063

357 anni001_357.jpg 2.033341615

358 anni001_358.jpg 2.854286158

359 anni001_359.jpg 3.034498845

360 anni001_360.jpg 2.939404825

361 anni001_361.jpg 3.225346566

362 anni001_362.jpg 1.611197958

363 anni001_363.jpg 3.295164882

364 anni001_364.jpg 2.516517881

365 anni001_365.jpg 2.767790863

366 anni001_366.jpg 3.018506661

367 anni001_367.jpg 2.339271914

368 anni001_368.jpg 3.200407972

369 anni001_369.jpg 3.267656976

370 anni001_370.jpg 3.507793075

371 anni001_371.jpg 3.224150167

372 anni001_372.jpg 2.585158331

373 anni001_373.jpg 3.291968448

374 anni001_374.jpg 3.048063295

375 anni001_375.jpg 3.099580452

376 anni001_376.jpg 2.992662311

377 anni001_377.jpg 1.636960066

378 anni001_378.jpg 2.830103816

379 anni001_379.jpg 3.06325817

380 anni001_380.jpg 3.114730145

381 anni001_381.jpg 2.813871432

382 anni001_382.jpg -1.06448156

383 anni001_383.jpg 3.326713936

384 anni001_384.jpg 3.338700505

385 anni001_385.jpg 3.195491234

386 anni001_386.jpg 3.017529482

387 anni001_387.jpg 2.280879888

388 anni001_388.jpg 3.152706563

66 | P a g e

389 anni001_389.jpg 2.88819778

390 anni001_390.jpg 3.037484959

391 anni001_391.jpg 2.989974569

392 anni001_392.jpg -0.051703995

393 anni001_393.jpg 3.259849758

394 anni001_394.jpg 3.006661979

395 anni001_395.jpg 2.78997002

396 anni001_396.jpg 2.93551714

397 anni001_397.jpg 2.326238468

398 anni001_398.jpg 2.680012833

399 anni001_399.jpg 3.114899459

400 anni001_400.jpg 2.903527763

401 anni001_401.jpg 3.018198248

402 anni001_402.jpg 2.283037948

403 anni001_403.jpg 2.93237011

404 anni001_404.jpg 2.91451357

405 anni001_405.jpg 2.786041225

406 anni001_406.jpg 2.803447652

407 anni001_407.jpg 0.422783449

408 anni001_408.jpg 2.936764618

409 anni001_409.jpg 2.80100797

410 anni001_410.jpg 3.018263604

411 anni001_411.jpg 2.977481416

412 anni001_412.jpg 0.956293486

413 anni001_413.jpg 2.808101793

414 anni001_414.jpg 2.734336933

415 anni001_415.jpg 2.741472301

416 anni001_416.jpg 2.907122723

417 anni001_417.jpg 2.42661871

418 anni001_418.jpg 2.982313914

419 anni001_419.jpg 3.029977244

420 anni001_420.jpg 3.005568367

421 anni001_421.jpg 2.592378448

422 anni001_422.jpg 1.418205088

423 anni001_423.jpg 3.125272339

424 anni001_424.jpg 2.652093463

425 anni001_425.jpg 3.264052872

426 anni001_426.jpg 3.019995211

427 anni001_427.jpg 1.306703361

428 anni001_428.jpg 3.011402735

429 anni001_429.jpg 3.088428324

430 anni001_430.jpg 2.923539224

431 anni001_431.jpg 2.900605647

432 anni001_432.jpg 2.174440089

433 anni001_433.jpg 2.96711783

434 anni001_434.jpg 3.154700349

435 anni001_435.jpg 2.900972499

67 | P a g e

436 anni001_436.jpg 2.846293657

437 anni001_437.jpg 0.818224579

438 anni001_438.jpg 2.879949203

439 anni001_439.jpg Hard cut 4.102789221

440 anni001_440.jpg 2.806057254

441 anni001_441.jpg 2.918788565

442 anni001_442.jpg 3.075637325

443 anni001_443.jpg 1.483798794

444 anni001_444.jpg 2.989685335

445 anni001_445.jpg 2.707994591

446 anni001_446.jpg 3.13364272

447 anni001_447.jpg 3.230616009

448 anni001_448.jpg 1.518499123

449 anni001_449.jpg 2.997395882

450 anni001_450.jpg 3.122717398

451 anni001_451.jpg 2.51382282

452 anni001_452.jpg 2.553068398

453 anni001_453.jpg 1.68036669

454 anni001_454.jpg 2.60579831

455 anni001_455.jpg 2.692388249

456 anni001_456.jpg 2.790047996

457 anni001_457.jpg 2.793579728

458 anni001_458.jpg 0.424253366

459 anni001_459.jpg 2.902753629

460 anni001_460.jpg 2.854491894

461 anni001_461.jpg 2.793538446

462 anni001_462.jpg 3.041261582

463 anni001_463.jpg 1.112083229

464 anni001_464.jpg 2.846045007

465 anni001_465.jpg 3.177928771

466 anni001_466.jpg 2.927281436

467 anni001_467.jpg 3.12391314

468 anni001_468.jpg 1.749959156

469 anni001_469.jpg 2.808125737

470 anni001_470.jpg 2.533982914

471 anni001_471.jpg 2.942232885

472 anni001_472.jpg 2.558958191

473 anni001_473.jpg 0.24003615

474 anni001_474.jpg 2.781610921

475 anni001_475.jpg 3.035608993

476 anni001_476.jpg 2.829487565

477 anni001_477.jpg 2.845182934

478 anni001_478.jpg -0.37820916

479 anni001_479.jpg 3.334509614

480 anni001_480.jpg 2.850943233

481 anni001_481.jpg 2.488451781

482 anni001_482.jpg 2.772169674

68 | P a g e

483 anni001_483.jpg 2.163649427

484 anni001_484.jpg 2.729053808

485 anni001_485.jpg 2.599587211

486 anni001_486.jpg 3.047769154

487 anni001_487.jpg 3.250167239

488 anni001_488.jpg 0.45777339

489 anni001_489.jpg 2.743200732

490 anni001_490.jpg 2.891894077

491 anni001_491.jpg 2.344353025

492 anni001_492.jpg 2.613043542

493 anni001_493.jpg 0.123665649

494 anni001_494.jpg 2.583484435

495 anni001_495.jpg 2.724907864

496 anni001_496.jpg 2.80515425

497 anni001_497.jpg 2.78452747

498 anni001_498.jpg 2.281789633

499 anni001_499.jpg 2.67457847

Table-3: Frames data prepared manually

The graph generated on Euclidean Distances data from the above table mentioned in
Appendix 1 in comparison with another graph generated by Change Point Detection
algorithm on the above Euclidean Distances as input. This is to measure and show the
efficiency and accuracy of our proposed approach.

Figure 40-A : Hard Cut detect

 Figure 40-B: Gradual Cut detect

Figure 40: Shot boundary detected in video frames

Here in this section, we summarize the testing results of our proposed method using

different video image sequences. Also, the performance of the proposed system is

measured using the following different TRECVID evaluation metrics those are defined as

69 | P a g e

Recall (R) =
Correct

Correct + Miss
x 100

Precision (P) =
Correct

Correct + False
x 100

F − Measure (F) =
2 x Precsion x Recall

Precision + Recall
x 100

Video
Number

of Shots

Number

of Frames

Yoo’s System (H.W.

Yoo, H. J. Ryoo,

and D. S. Jang,

2006)

Wenjing Tong’s

System(Li Song,

Xiaokang Yang, Hui

Qu, Rong Xie, 2015)

Proposed Method

P R F P R F P R F

anni001 10 870 0.67 0.67 0.65 1 0.881 0,94 0.99 0.94 0.96

anni005 38 11362 0.84 0.88 0.86 1 0.895 0.932 0.99 0.93 0.96

anni009 38 12305 0.86 0.94 0.90 1 0.821 0.901 0.98 0.94 0.96

Table-4: Comparison with other methods

We downloaded the above used benchmark databases from NIST (http://trecvid.nist.gov/) as

it has a commonly used huge evaluation database.

10. Conclusions

This work introduces an efficient and robust system for detecting video scene changes, an
essential task in fully content analysis systems. We faced many difficulties when during the
installation process. It took almost 1 month to install the necessary libraries. Our module
receives frame differences as inputs, then recalls the information stored into the neural
network weights to determine the outputs. The algorithm has been tested on varieties of
videos. Better generalization of the neural network can be achieved by increasing the
number of video clips used in the training phase and by varying their contents. The
effectiveness of the proposed paradigm has been proven as a robust and efficient way to
identify scene changes in any type of compressed video streams.

70 | P a g e

11. References

[1] Nikita Sao, Ravi Mishra, A survey based on Video Shot Boundary Detection techniques

https://github.com/BVLC/caffe/

[2] http://caffe.berkeleyvision.org/
[3]Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long,

Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor. Caffe:

Convolutional Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093,

2014.

[4]Waleed E. Farag, University of Pennsylvania, USA Hussein Abdel-Wahab, Old Dominion

University, USA, Video Shot Boundary Detection

[5]http://mathonline.wikidot.com/the-distance-between-two-vectors

[6]Christian Szegedy, Wei Liu, YangqingJia , Pierre Sermanet, Scott

Reed ,DumitruErhan,Vincent Vanhoucke. Andrew Rabinovich ,Going deeper with

convolutions

[7]http://searchnetworking.techtarget.com/definition/neural-network

[8]https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks.

htm

[9]https://www.slideshare.net/nilmani14/neural-network-3019822

[10]John S. Boreczky Lawrence A. Rowe , Comparison of video shot boundary detection
techniques , Journal of Electronic Imaging 5(2), 122–128 (April 1996)

[11]YangqingJia , Evan Shelhamer , Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, Trevor Darrell, Caffe: Convolutional Architecture for Fast
Feature Embedding,ProceedingMM '14 Proceedings of the 22nd ACM international
conference on Multimedia , Pages 675-678

[12] Source: https://stfalcon.com/en/blog/post/deep-learning-benefits-and-challenges

[13]http://www.coldvision.io/2016/07/29/image-classification-deep-learning-cnn-caffe-
opencv-3-x-cuda/

[14] https://en.wikipedia.org/wiki/Euclidean_distance

[15]https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-
convolutional-neural-networks-f40359318721

[16]https://medium.com/@datamonsters/artificial-neural-networks-for-natural-language-
processing-part-1-64ca9ebfa3b2

[17] http://cs231n.github.io/convolutional-networks/#architectures

[18] MSP Waghmare, AS Bhide - Citeseer, Video Shot Boundary Detection
Techniques ,International Journal of Advanced Research in Electronics and Communication
Engineering (IJARECE), Volume 3, Issue 11, November 2014

https://github.com/BVLC/caffe/
http://caffe.berkeleyvision.org/
http://mathonline.wikidot.com/the-distance-between-two-vectors
http://searchnetworking.techtarget.com/definition/neural-network
https://www.slideshare.net/nilmani14/neural-network-3019822
https://stfalcon.com/en/blog/post/deep-learning-benefits-and-challenges
http://www.coldvision.io/2016/07/29/image-classification-deep-learning-cnn-caffe-opencv-3-x-cuda/
http://www.coldvision.io/2016/07/29/image-classification-deep-learning-cnn-caffe-opencv-3-x-cuda/
https://en.wikipedia.org/wiki/Euclidean_distance
https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721
https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721
https://medium.com/@datamonsters/artificial-neural-networks-for-natural-language-processing-part-1-64ca9ebfa3b2
https://medium.com/@datamonsters/artificial-neural-networks-for-natural-language-processing-part-1-64ca9ebfa3b2
http://cs231n.github.io/convolutional-networks/#architectures

71 | P a g e

[19] https://elearningindustry.com/how-digital-video-works-digital-video-101

[20] http://danielhancockphotography.com/uncategorized/histogram/

[21] https://scialert.net/fulltextmobile/?doi=jas.2006.1679.1685

[22] https://www.researchgate.net/figure/Hierarchical-Structure-of-Video_fig1_236142063

[23]https://medium.com/swlh/ill-tell-you-why-deep-learning-is-so-popular-and-in-
demand-5aca72628780

[24] Hubert, M., Rousseeuw, P. J., & Vanden Branden, K. (2005). ROBPCA: A new approach

to robust principal component analysis. Technometrics, 47, 64–79.

[25] Bulteel, K., Ceulemans, E., Thompson, R., Waugh, C., Gotlib, I., Tuerlinckx, F., &

Kuppens, P. (2014). DeCon: A tool to detect emotional concordance in multivariate time

series data of emotional responding. Biological Psychology, 98(1), 29–42.

[26] Lung-Yut-Fong, A., Lévy-Leduc, C., & Cappé, O. (2012). Homogeneity and change-point

detection tests for multivariate data using rank statistics. Retrieved from

[27] Arlot, S., Celisse, A., & Harchaoui, Z. (2012). Kernel change-point detection. Retrieved

from http://arxiv.org/abs/1202.3878

[28] https://arxiv.org/pdf/1306.4933.pdf

[29] https://link.springer.com/article/10.3758%2Fs13428-016-0754-9#Abs1

[30] H. W. Yoo, H. J. Ryoo, and D.S. Jang, 2006, Gradual shot boundary detection using

localized edge blocks, Multimedia Tools Appl., vol. 28, pp. 283–300

[31] Wenjing Tong1, Li Song1, Xiaokang Yang1, Hui Qu1 and Rong Xie1, CNN-Based Shot

Boundary Detection and Video Annotation

https://elearningindustry.com/how-digital-video-works-digital-video-101
http://danielhancockphotography.com/uncategorized/histogram/
https://scialert.net/fulltextmobile/?doi=jas.2006.1679.1685
https://medium.com/swlh/ill-tell-you-why-deep-learning-is-so-popular-and-in-demand-5aca72628780
https://medium.com/swlh/ill-tell-you-why-deep-learning-is-so-popular-and-in-demand-5aca72628780
https://arxiv.org/pdf/1306.4933.pdf
https://link.springer.com/article/10.3758%2Fs13428-016-0754-9#Abs1

APPENDIX-1

The below graph is generated on the Euclidean Distance algorithm applied between two frames. This distance measured

on extracted feature points of frame of the video considered.

Figure 41: Hard cut and Gradual cut detection

-2

-1

0

1

2

3

4

5

6

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

1
6

3

1
7

2

1
8

1

1
9

0

1
9

9

2
0

8

2
1

7

2
2

6

2
3

5

2
4

4

2
5

3

2
6

2

2
7

1

2
8

0

2
8

9

2
9

8

3
0

7

3
1

6

3
2

5

3
3

4

3
4

3

3
5

2

3
6

1

3
7

0

3
7

9

3
8

8

3
9

7

4
0

6

4
1

5

4
2

4

4
3

3

4
4

2

4
5

1

4
6

0

4
6

9

4
7

8

4
8

7

4
9

6

Hard cut & Gradual cut detection

The below graph is generated by the Change Point Detection(CPD) algorithm where earlier calculated Euclidean Distance

values between two frames were passed as input.

Figure 42: Hard cut and Gradual cut detection by CPD algorithm

