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Video Shot Boundary Detection 

 
1. Abstract  
 
Multimedia streams usage increases nowadays and that creates the scope of development 
of efficient and effective methodologies for manipulating different image databases storing 
this type of information. Any content-based access to video data always requires parsing of 
each video stream into its building blocks. Any video stream consists of a number of shots, 
each one is a sequence of frames pictured using a single camera. Transition from a shot to 
the next one means switching from one camera to another. The detection of these 
transitions, known as scene change or shot boundary detection, is the very first step in any 
video stream-analysis system. There are numbers of proposed techniques are available for 
solving the problem of shot boundary detection, but the major limitation to them are their 
inefficiency, lack of reliability and less trustworthy. The performance has a direct impact on 
the performance of all other stages as the reliability of the scene change detection stage is a 
very significant requirement. Here, proposes to learn shot boundary detection end-to-end, 
from pixels to final shot boundaries. For training such a model, we created our own dataset 
and automatically generated transitions such as cuts, dissolves and fades. Here we propose 
a Convolutional Neural Network (CNN) which is fully convolutional in time and efficiently 
analyse hours of videos. Also, we propose to use Euclidean Distance algorithm and Change 
Point Analysis algorithm to make the system more efficient and accurate in nature. With this 
architecture my method will obtain state-of-the-art results while running at an unprecedented 
speed. I outperform dissolve gradual detection, generate competitive performance for sharp 
detections and produce significant improvement in wipes. In a short, the experimental results 
achieve the high efficiency of the proposed system in detecting shot boundaries within 
different video shots. 

 

2. Introduction  

All digital video information consists of a series of many frames or images. Over the years 

image processing technology has developed comprehensive and complete measures and 

techniques to index, store, edit, retrieve, sequence and present video material. To develop 

any content-based manipulations on digital video stream information, this information must 

first be structured and broken down into different components. The basic structural building 

blocks are called shots and the boundaries between shots need to be determined 

automatically.  

A shot in video stream information may be defined as continuous images (i.e. frames) from a 

single camera at a time. A shot boundary is defined the gap between two shots. A cut is a 

type of shot boundary where one shot abruptly changes to another shot. An example of a 

shot cut is where the last frame in one shot is followed by the first frame in the next. 

Examples of other different types of shot boundary are fades (where the frames of the shot 

gradually change from or to black), dissolves (where the frames of the first shot are gradually 

morphed into the frames of the second) or wipes (where the frames of the first shot are 

moved gradually in a horizontal or vertical direction into the frames of the second). 

 The main reason why automatic shot boundary detection is difficult is the fact that any kind 

of shot transition can be easily confused with camera and object motion which occurs in 

video anyway. A shot with much object motion throughout the frame such as a sports or 

action shot or a clip from a music video, can cause the false recognition of a shot boundary. 
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Conventionally, if there exist frames that are merged by the adjacent shots but belong to 
neither of them, the transition is called a gradual one; otherwise, it is called a cut.[1] 

 

  

 

 

Figure-1: hard cut effect[1] 

 

 

 

Figure-3: Wipe effect[1] 
 

 

  
Figure-2: fade effect[1] 

 
Figure-4: Dissolve effect[1] 

 

3. Literature Survey 
This paper is mostly concentrate on the work till done in respect of video shot boundary 
detection in different areas. John S. Boreczky et al [1996] proposed Comparison of video 
shot boundary detection techniques and present a comparative analysis of various shot 
boundary detection techniques and their variations including histograms, discrete cosine 
transform, motion vector, and block matching methods. Patrick Bouthemy et al [1999] 
proposed Unified Approach to Shot Change Detection and Camera Motion haracterization 
which describes an approach to partition a video document into shots by using image motion 
information, which is generally more intrinsic to the video structure itself. A. Miene et al 
[2001] presented Advanced and Adaptive Shot Boundary Detection techniques which are 
based on–feature extraction and shot boundary detection. First, three different features for 
the measurement of shot boundaries within the video are extracted. Second, detection of the 
shot boundaries based on the previously extracted features. H. Y: Mark Liaoff et al [2002] 
proposed a novel dissolve detection algorithm which could avoid the mis-detection of 
motions by using binomial distribution model to systematically determine the threshold 
needed for discriminating a real dissolve from global or local motions. Jesús Bescós 

[2004], proposed a detection of change of video shot(i.e. cut) in real time on MPEG22 online 

video there he describes a software module for video temporal segmentation that is enough 
capable of detecting abrupt transitions and all kinds of gradual transitions in real time. 
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Guillermo Cisneros et al [2005] proposed a document on A Unified Model for Video-Shot 
Transition Detection Techniques. The approach presented here focuses on the mapping of 
the space of distances between frames in a new decision space more suitable to achieve an 
independent thresholding of the sequence. Liuhong Liang et al. [2005], presented an 
Improved Trigger Limit Detection using video text information, in which various edge-based 
techniques have been proposed to detect abrupt firing limits to avoid the influence of 
common flashlights in many types of video, such as sports, news, entertainment and 
interview videos. Daniel DeMenthon et al [2006] proposed a document on trigger limit 
detection based on the correlation functions of video images. This document is based on the 
correlation functions of images in the videos. The cut detection is based on the so-called 
2max ratio criterion in a sequential image buffer. Dissolution detection is based on the 
difference of image jump and linearity error in a sequential image buffer. Kota Iwamoto and 
others [2007], the detection of wipes and digital video effects was proposed based on an 
independent model of image boundary line characteristics pattern that is based on a new 
independent model of patterns. These models are based on the characteristics of the image 
boundary lines that divide the two image regions in the transition frames. Jinhui Yuan et al 
[2008] proposed a document on a trigger limit detection method for news video based on the 
segmentation and tracking of objects. It combines three main techniques: the method of 
comparison of partitioned histograms, segmentation of video objects and tracking based on 
wavelet analysis. The comparison of the partitioned histogram is used as the first filter to 
effectively reduce the number of video frames that need segmentation and object tracking. 
Yufeng Li et al [2008] proposed an article on Algorithm of detection of new shots based on 
the theory of the information. First, the characteristics of the color and texture are extracted 
by wavelet transform, then the difference between two successive frames that collide the 
mutual information of the color characteristic and the mutual information of matching of the 
texture characteristic is defined. The threshold is adjusted adaptively depending on the 
entropy of the Continuous frames and does not depend on the type of video and the type of 
shot. Vasileios T. Chasanis et al [2009] presented the detection of scenes in videos using 
clustering of shots and alignment of sequences. First the keyframes were extracted using a 
spectral clustering method using the fast global k-means algorithm in the clustering phase 
and also providing an estimate of the number of the keyframes. Then, the shots are grouped 
into groups using only the visual similarity as a function and are labeled according to the 
group assigned to them. Jinchang Ren et al [2009] proposed a document on detection of 
trigger limits in MPEG videos using local and global indicators that operate directly in the 
compressed domain. Several local indicators are extracted from the MPEG macroblocks, 
and Ada Boost is used for the selection and merging of features. The selected 
characteristics are then used to classify the candidate cuts in five subspaces by pre-filtering 
and rules-based decision making, then the global indicators of frame similarity are examined 
among cut-off frames of cut candidates using the phase correlation. of CC images. 
Priyadarshinee Adhikari et al [2009] proposed a document on Video Shot Boundary 
Detection. This document presents the recovery of video using detection of limit of shot. 
LihongXu et al [2010] proposed a paper on a new shot detection algorithm based on 
grouping. This article presents a novel trigger limit detection algorithm based on the K-
means grouping. The extraction of the color feature is done first and then the difference of 
the video frames is defined. The video frames are divided into several different sub-clusters 
by performing K-means clusters. Wenzhu Xu and others [2010] proposed an article on a 
new shot detection algorithm based on graph theory. This article presents a trigger limit 
detection algorithm based on graph theory. Video frames are divided into several different 
groups through the realization of a theoretical graphics algorithm. Arturo Donate et al [2010] 
presented Detection of shooting limits in videos using a robust three-dimensional tracking. 
The proposal is to extract the highlighted features of a video sequence and track them over 
time to estimate the limits of the shots within the video. Min-Ho Park et al [2010] proposed 
a paper on the detection of efficient trigger limits using characteristics based on block 
movement. It is a measure of discontinuity in camera and an object / background movement 
for SBD is proposed based on the combination of two movement characteristics: the 
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modified displaced frame difference (DFD) and the block wise movement similarity. Goran 
J. Zajić et al [2011] proposed a document on detection of video trigger limits based on 
multifractal analysis. Low-level features (color and texture characteristics) are extracted from 
each frame in video sequence, then concatenated into feature vectors (FV) and stored in the 
feature matrix. The rows of matrix correspond to FV of frames of the video sequence, while 
the columns are time series of a particular FV component. Partha Pratim Mohanta et al 
[2012], proposed an article on a model-based trigger limit detection technique that uses 
frame transition parameters that is based on a formulated frame estimation scheme that 

uses the previous frame and the next frame. Pablo Toharia et al [2012] proposed an article 

on Shot Boundary detection using Zernike moments in multi-CPU multi-GPU architectures 
along with the different possible hybrid combinations based on Zernike moments. Sandip T 
et al. [2012] proposed a document on the video summary based on keyframes using the 
automatic threshold and the speed of correspondence of the edges. First, the Histogram 
difference of each frame is calculated, and then the edges of the candidate keyframes are 
extracted by the Prewitt operator. 
Zhe Ming Lu et al [2013] present a fast video trigger limit detection based on SVD and 
pattern matching. It is based on the selection of segments and decomposition of singular 
values (SVD). Initially, the positions of the firing limits and the lengths of the gradual 
transitions are predicted using adaptation thresholds and most non-contour frames are 
discarded at the same time. Sowmya R et al [2013] proposed a document on Analysis and 
verification of summary video using Shot Boundary Detection. The analysis is based on the 
difference of the block-based histogram and the euclidean distance difference based on 
blocks for various block sizes. Ravi Mishra et al [2014] proposed an article on a 
"Comparative study of the block matching algorithm and the complex transformation of two 
trees for the detection of shots in videos". This article presents a comparison between the 
two detection methods in terms of several parameters, such as false rate, hit rate, failure 
rate tested in a set of different video sequences. Wenjing Tong et al [2015] proposed a 
document on trigger limit detection based on CNN and video annotation. This analysis is 
based on TAG frames generated by a CNN model. Ahmed Hassanien et al [2017] 
proposed a document on detection of large-scale, rapid and precise trigger limits through 
spatial-temporal convolutional neural networks. This analysis is based on exploiting Big Data 
to optimize both the accuracy and speed of two large data sets. 

 

4. Few Keywords and Definitions 

4.1 What is Video? 

Digital video is audio-visual stream in a binary format. Information is presented as a 

sequence of digital data block, rather than in a continuous signal as analog information 

provides. 

Digital video shows up on our screens but conceptually the same as the simpler to 

understand motion pictures, invented over couple of decades ago. Just like physical film and 

analog video, a digital video stream is made up of individual frames, each one representing 

a time slice/block of the scene. Film displays 24 frames/second, and an American video 

presents 30 frames/second, it is known as the frame rate. To get smoother video need to 

increase the number of frames in any given second. Digital video clips use frame rates from 

12-30 frames per second, whereas 24 frames per second commonly used. 

http://searchcio-midmarket.techtarget.com/definition/binary
http://searchcio-midmarket.techtarget.com/definition/digital
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Figure-5 [19] 

 

4.1.1. Hierarchical Structure of Video 

 

Figure-6 [22] 
 

 Scene:  A number of shots that form a semantic unit.  
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 Shot: All frames with in single camera action.  

 Frame: One Static image from a series of static images constituting a video. 

 

4.1.1.1. Types of Shot 
 

 

 
 

 
Figure-7 

 

4.1.1.1.1. Hard Cut 
 
Hard cut is the basic cutaway. The filmmaker is moves from the action to other things and 
then comes back to the action. Cutaways are used to edit out boring or add action to a 
sequence by changing the pace of the footage.  

 

 

4.1.1.1.2. Fade 
 
Two keywords, fade-in and fade-out usually signal the beginning or end of a scene, 
especially if the filmmaker fades to/from black. This is the most common scenario, of course, 
but fading to white has become trendy, too.  

 

 

Hard Cut Transition 

Fade Dissolve Wipe 

Shot Transition 

Gradual Transition 
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4.1.1.1.3. Dissolve 
 
This is an editing technique where one clip seems to dissolve, or fade-in to the next. When 
the first clip is fading out, getting lighter and lighter, the second clip starts fading in, 
becoming more and more prominent/visible. The viewer is not aware of the transition as the 
process usually happens so subtly and so quickly.  
 
 

 
Figure-8: Fade – out gradual transition [18] 

 

 
 

Figure-9: Fade – in gradual transition [18] 
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Figure-10: Dissolve transition [18] 

4.1.1.1.4. Wipe 

 
Figure-11: Wipe transition [18] 

 
This wipe transition is the just opposite of the dissolve transition in that it draws attention to 
itself. The best example of the wipe is what's known as the Iris Wipe, which you usually find 
in silent films. Other commonly used wipe shapes includes stars, diamonds, and the old 
turning clock. 

 

4.2. Boundary Detection 
 For any video indexing, browsing, retrieval, representation and other video analysis 

technologies video shot boundary detection is the first and fundamental step. 

 To identify the transition between every two adjacent shots, video shot boundary 
detection is the process.  

 

4.2.1. Earlier Various Approaches to Shot Detection 

4.2.1.1 Pixel Comparison 

In Pixel Comparison, if there two frames are significantly different and to count the number of 

pixels that change in value more than any threshold. This method is sensitive to camera 

motion. We note that manually adjusting the threshold is unlikely to be practical. This 
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commonly used matching process duplicates the process used to extract motion vectors 

from an image pair. Then the pixel differences for each region were sorted, and then the 

weighted sum of the sorted region differences. The Gradual transitions were detected by 

generating a cumulative difference measures from consecutive values of the image 

differences. During dissolves and fades, this chromatic image assumes a reasonably 

constant value.  

 

 

 

 

 

 

 

 
                              Frame N +1 

 
Figure-12 

 

 

4.2.1.2. Histogram Comparison 
 
The histogram comparison methods are the most common method used to detect shot 
boundaries. The simplest histogram method computes, two types, gray level or color level 
histograms of any of the two images. If the bin-wise difference between the two histograms 
is above a threshold, a shot boundary is assumed.  

 

Frame N 
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Figure-13: Histogram Comparison [20] 

 

4.2.1.3. Statistical Differences 

 
The statistical method is nothing but the idea of pixel differences by breaking the images into 
regions/blocks and comparing statistical measures of the pixels in those regions. It divides 
the frames into small regions. Then compares some of the few properties of every pixel in 
those regions between successive frames using the measurable statistical computation 
parameters. 
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4.2.1.4. Motion Vectors 

 
MPEG compressed video sequences can also contains Motion vector information. The block 
matching performed as part of MPEG encoding based on compression efficiency and thus 
often selects inappropriate vectors for image processing purposes. 

 

4.2.1.5. Edge Change Ratio 

 
To detect, if any new edges have entered the image or if some old edges have disappeared, 
commonly uses the edges of successive aligned frames are detected first and then the edge 
pixels are paired with nearby edge pixels in the other image. 
 
The main reason why automatic shot boundary detection is difficult is the fact that any kind 

of shot transition can be easily confused with camera and object motion which occurs in 

video anyway. A shot with much object motion throughout the frame such as a sports or 

action shot or a clip from a music video, can cause the false recognition of a shot boundary. 

In this project we report on shot boundary detection by using Convolutional Neural 

Network(CNN). 
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Figure-14: Edge Change Ratio  [21] 
 

4.3. Deep Learning 
As a part of Artificial Intelligence (AI) technology world, deep learning really stands behind 
numerous innovations: both voice and image recognition, self-car driving, security 
surveillance system etc. Nowadays, this technology has occupied multiple aspects of human 
lives. Generates such a huge interest in both machine and deep learning technologies is 
based on their advantages. 
 

 
Figure-15: Deep Learning [23] 

 
 
 

4.3.1. The Definition of Deep Learning 
A set of machine learning algorithms that model high-level views in data using architectures 
called Deep learning. However, a deep learning technology is based on Artificial Neural 
Networks(ANNs). These ANNs helps continuously growing amounts of data and constantly 
receive learning algorithms to increase the efficiency of training processes. The larger data 
volumes are make the process more efficient. With the time passing, a neural network 
covers a growing number of levels, the training process is called «deep». The higher its 
productivity is the «deeper» this network penetrates. 
 

4.3.2. How Deep Learning Works 
Two main phases are there in a deep machine learning process: training and inferring. 
Labeling of large amounts of data and determine their matching characteristics called 
training process. The system compares these characteristics and memorizes(learns) them 
to make correct conclusions when it faces similar data stream next time. 
The following stages are there is a deep learning training process: 

1. ANNs ask a set of binary false/true questions or. 
2. Extracting numerical values from data blocks. 
3. Classifying data according to the answers received. 
4. Labeling Data. 

During the inferring phase, the deep learning AI makes conclusions and label new 
unexposed data using their previous knowledge. 
 

4.3.3. Deep Learning and Machine Learning? 
Deep learning is a kind of traditional machine learning. However, classical machine learning 
is the extraction of new knowledge from a large data array loaded into the machine. Users 
first formulate the machine training rules and then correct errors made by a machine. This 
approach eliminates a negative overtraining effect frequently appearing in deep learning. 
In machine learning, users provide both examples and training data to a machine to help the 
system make correct decision is called supervised learning.  
Diversity between machine learning and deep learning: 

 Deep Learning uses a lot of un-labelled training data to make 
appropriate conclusions whereas Machine Learning can use small data 
stream  provided by users. 

 Unlike Machine Learning, Deep Learning needs high-performance 
hardware. 

https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D0%B5%D1%82%D1%8C
https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D0%B5%D1%82%D1%8C
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 Machine Learning requires features to be accurately identified by users 
while Deep Learning creates new features by itself. 

 Machine Learning divides tasks into small pieces and then combine 
received results into one conclusion while Deep Learning solves the 
problem on the end-to-end basis. 

 In comparison with Machine Learning, Deep Learning needs much 
more time to train. 

 Unlike Deep Learning, Machine Learning can provide enough 
transparency for its decisions. 

The machine creates its functionality by itself as long as it is possible - the concept of deep 
learning explains. Deep learning applications use a hierarchical approach involving 

determining the most important characteristics to compare to infer. 

 

4.3.4. Creating New Features 
Ability to generate new features from limited series of features located in the training dataset 
is one of the main benefit of deep learning over various machine learning algorithms. 
Therefore, deep learning algorithms can create new tasks to solve current ones.  
Data scientists can save much time on working with big data and relying on this technology 
as deep learning can create features without a human intervention. It allows the data 
scientists to use more complex sets of features in comparison with traditional machine 
learning software. 

 

4.3.5. Advanced Analysis 
Deep learning generates actionable results when solving data science tasks due to its 
improved data processing models. While machine learning works only with labeled data, 
deep learning supports unsupervised learning techniques that allow the system become 
smarter on its own. Due to the capacity to determine the most important features allows 
deep learning to efficiently provide data scientists with reliable and concise analysis results. 

 

4.3.6. Deep Learning Challenges 
Models of human abstract thinking used by deep learning rather than using it. Despite all its 
benefits, this technology has a set of significant disadvantages also. 
 

4.3.7. Continuous Input Data Management 
A training process is based on analyzing large amounts of data is there in deep learning. 
However, fast-moving and streaming input data provides little time for ensuring an efficient 
training process. That is why data scientists adapt their deep learning algorithms in a way 
neural networks can handle large amounts of continuous input data. 
 

4.3.8. Ensuring Conclusion Transparency 
Another important disadvantage of deep learning software is that it is not explicitly says the 
reason why it has reached a certain conclusion. Unlike in case of traditional machine 
learning, you cannot follow an algorithm to find out why your system has decided that it is a 
cat on a picture, not a dog. Have to revise the whole DL algorithm to correct that. 

 

4.3.9. Resource-Demanding Technology 
Deep learning technology is a quite high resource demanding technology as it requires more 
powerful GPU(Graphics processing unit)s, with large amounts of storage to train the models, 
etc. Apart from this technology needs more time to train in comparison with traditional 
machine learning process. 
Though there are lots of disadvantages, deep learning discovers new improved methods of 
unstructured big data analytics for those with the intention to use it. The businesses can 
gain significant benefits from using deep learning within their tasks of data processing.  
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4.3.10. What is an Artificial Neural Network?  
An ANN(artificial neural network) is based on the neural structure of the brain. It is also able 
to learn and perform tasks like the followings as classification, prediction, decision-making, 
visualization 
An ANN consists of artificial neurons or processing elements and is organized in three 
consecutive interconnected layers: input, hidden that may include more than one layer, and 
output. 
 

 
Figure-16: Artificial Neural Network[13] 

 
The input layer contains input neurons those send information to the hidden layer. Then the 
hidden layer sends data to the output layer. Every neuron has weighted inputs (synapses), 
an activation function (defines the output given an input), and one output. Here synapses are 
the adjustable parameters that helps to convert a neural network to a parameterized system. 
 
 

Why Neural Network 
 

• A neural network can perform tasks that a linear program cannot does. 
• When an element of the neural network fails, it can continue without any problem by 

their parallel nature. 
• No reprogrammed is required in neural network learning. 
• It can be implemented in any application and can be implemented without any 

problem 
 
 
 
 
 

https://en.wikipedia.org/wiki/Synaptic_weight
https://en.wikipedia.org/wiki/Activation_function
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Figure-17: Artificial Neuron with four input[15] 

 

 

Artificial neuron with four input 
To get one output from the neuron, the weighted sum of the inputs produces the activation 
signal that is passed to the activation function. The commonly used activation functions are 
linear, step, sigmoid, tanh, and rectified linear unit (ReLu) functions. 

 
Linear function 

f(x)=ax 

 
Step function 

 

 
Logistic (Sigmoid) Function 

 

 
Tanh Function 
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Rectified linear unit (ReLu) function 

 

 
 

Figure-18[16] 

 
The error of predictions is minimized and the network reaches a specified level of accuracy 
during training. The method mostly used to determine the error contribution of each neuron 
is called backpropagation that calculates the gradient of the loss function. 
It is possible to make the system more flexible and more powerful by adding additional 
hidden layers. Artificial neural networks with multiple hidden layers between the input and 
output layers are called deep neural networks (DNNs), and they can model complex 
nonlinear relationships. 

 

4.3.10.1. Feedforward Neural Network 
First and simplest type of artificial neural network devised was the feed-forward neural 
network. It contains multiple neurons/nodes arranged in layers. Neurons/nodes from 
adjacent layers have connections between them. All these connections have weights 
associated with them. 
An example of a feed-forward neural network is shown below. 
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Figure-19: An example of feedforward neural network[16] 

 

 
A feed-forward neural network can consist of three types of nodes: 

1. Input Nodes – This node provides information from the outside world to the network. 

Together referred to as the “Input Layer”. In any of the Input nodes, no computation 
is performed – they just pass on the information to the hidden nodes. 

2. Hidden Nodes – The Hidden nodes have no direct connection with the outside world 

(hence the name “hidden”). They perform computations and transfer information from 
the input nodes to the output nodes. A collection of hidden nodes forms a “Hidden 
Layer”. While a feedforward network will only have a single input layer and a single 
output layer, it can have zero or multiple Hidden Layers. 

3. Output Nodes – These nodes are collectively referred to as the “Output Layer”. 

Those are responsible for computations and transferring information from the 
network to the outside world. 

In a feedforward network, the information moves in only forward direction – from the input 
nodes, through the hidden nodes and to the output nodes. There are no cycles or loops in 
the network. 
 
Two examples of feedforward networks are given below: 

1. Single Layer Perceptron – This is the simplest feedforward neural network and 

does not contain any hidden layer.  
2. Multi Layer Perceptron – A Multi-Layer Perceptron has one or more hidden layers.  
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Figure-20 shows a multi-layer perceptron with a single hidden layer. Note that all 

connections have weights associated with them, but only three weights (w0, w1, w2) are 
shown in the figure. 
  

Input Layer: The Input layer has three nodes. The Bias node has a value of 1. The other 

two nodes take X1 and X2 as external inputs (which are numerical values depending upon 
the input dataset). As discussed above, no computation is performed in the Input layer, so 
the outputs from nodes in the Input layer are 1, X1 and X2 respectively, which are fed into 
the Hidden Layer. 
  

Hidden Layer: The Hidden layer also has three nodes with the Bias node having an output 

of 1. The output of the other two nodes in the Hidden layer depends on the outputs from the 
Input layer (1, X1, X2) as well as the weights associated with the connections (edges).  
 

Figure-20 shows the output calculation for one of the hidden nodes (highlighted). Similarly, 

the output from other hidden node can be calculated. 

  
Figure-20: A multi-layer perceptron having one hidden layer[16] 
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Output Layer: The two nodes of Output layer which take inputs from the Hidden layer and 

perform similar computations as shown for the highlighted hidden node. The values 
calculated (Y1 and Y2) as a result of these computations act as outputs of the Multi Layer 
Perceptron. 
Given a set of features X = (x1, x2, …) and a target y, a Multi Layer Perceptron can learn the 
relationship between the features and the target, for either classification or regression. 

  

4.3.10.2. Backward Propagation of Errors 

This is often abbreviated as BackProp is one of several ways in which an artificial neural 
network (ANN) can be trained. It is under a supervised training scheme, which means that it 
learns from the tagged training data. 
To put it in simple terms, BackProp is like "learning from mistakes". The supervisor corrects 
the ANN every time he makes a mistake. 
An artificial neural network consists of nodes in the following layers: input layer, intermediate 
hidden layer, and output layer. The "weights" associated with the connected nodes of 
adjacent layers. The goal of learning is to assign correct weights for these edges. In 
supervised learning, the training set is labeled. This means that, for some given inputs, we 
know the desired / expected output. 

  
BackProp Algorithm: 

  
Initially, all edge weights are assigned randomly. For each entry in the training data set, the 
ANN is activated and its output is observed. This result is compared to the desired result that 
we already know, and the error "propagates" back to the previous layer. This error observes 
and the weights are "adjusted" accordingly. This process is repeated until the output error is 
below a predetermined threshold. 
Once the previous algorithm ends, we have a "learned" ANN that, we believe, is ready to 
work with "new" entries. It is said that this ANN has learned from several examples (tagged 
data) and its errors (propagation of errors). 
Now that we have an idea of how Backpropagation works, let's go back to our student brand 
data set shown above. 

The multilayer perceptron shown in Figure-20, has two nodes in the input layer (apart from 

the Bias node) that take the 'Hours Studied' and 'Mid Term Marks' entries ' It also has a 
hidden layer with two nodes (apart from the Bias node). The output layer also has two 
nodes: the upper node generates the probability of 'Pass', while the lower node generates 
the probability of 'Fail'. 
In classification tasks, we generally use a Softmax function as the activation function in the 
Multilayer Perceptron output layer to ensure that the outputs are probabilities and add 1. The 
Softmax function takes a vector of arbitrary real value scores and crushes it to a vector of 
values between zero and one that adds up to one. So, in this case, 
 

Probability (Pass) + Probability (Fail) = 1 

  
Step 1: Forward Propagation 
All weights in the network are randomly assigned. Lets consider the hidden layer node 

marked V in Figure-20 below. Suppose that the weights of the connections of the inputs to 

that node are w1, w2 and w3 (as shown). 
Then, the network takes the first example of training as input (we know that for entries 35 
and 67, the probability of passing is 1). 
 • Network input = [35, 67] 
 • Desired network output (destination) = [1, 0] 
Then, the V output of the node under consideration can be calculated in the following way (f 
is an activation function as a sigmoid): 
 V = f (1 * w1 + 35 * w2 + 67 * w3) 
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Similarly, the outputs of the other node in the hidden layer are also calculated. The inputs to 
the two nodes in the output layer come from the outputs of the two nodes in the hidden layer. 
This allows us to calculate the exit probabilities of the two nodes in the output layer. 
Suppose, the output probabilities of the two nodes in the output layer are 0.4 and 0.6 
respectively. We can see that the calculated probabilities (0.4 and 0.6) are very far from the 

desired probabilities (1 and 0 respectively), hence the network in Figure-20 is said to have 

an ‘Incorrect Output’. 

 
Figure-21: Forward propagation step in a multi-layer perceptron[16] 

  
Step 2: Back Propagation and Weight Updation 
 We calculate the total error in the output nodes and propagate these errors through the 
network using Backpropagation to calculate the gradients. Then we use an optimization 
method like Gradient Descent to 'adjust' all the weights in the network in order to reduce the 
error in the output layer. This is shown in Figure 6 below (ignore the mathematical equations 
in the figure for now). Suppose that the new weights associated with the considered node 
are w4, w5 and w6 (after the inverse propagation and weight adjustment).

 
Figure-22: Backward propagation and weight updation step in a multi-layer perceptron[16] 

 
If we now enter the same example into the network again, the network should work better 
than before since the weights have now been adjusted to minimize the prediction error. As 
shown in Figure 7, errors at the output nodes are now reduced to [0.2, -0.2] compared to 
[0.6, -0.4] above. This means that our network has learned to correctly classify our first 
example of training. 
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Figure-23: The MLP network now performs better on the same input[16] 

  
We repeat this process with all the other examples of training in our data set. Then, it is said 
that our network learned those examples. 
If we now want to predict if a student who studies 25 hours and has 70 medium-term 
qualifications will pass the final term, we pass through the forward propagation step and find 
the exit probabilities for Pass and Fail. 
I have avoided the mathematical equations and the explanation of concepts like 'Gradient 
Descent' here and I have tried to develop an intuition for the algorithm. For a more 
mathematically involved discussion of the Backpropagation algorithm, see this link. 

 

5. Different Neural Networks 
5.1. Convolutional Neural Network (CNN) 

 
 

Figure-24: Typical CNN architecture[16] 

 
A convolutional neuronal network (CNN) contains one or more convolutional layers, grouped 
or fully connected, and uses a variation of multilayer perceptions. The convolutional layers 
use a convolution operation at the input that passes the result to the next layer.  
Yoon Kim in convolutional neural networks for classifying sentences describes the process 
and results of text classification tasks using CNN. He presents a model built on word2vec, 
carries out a series of experiments with it and compares it with several reference points, 
which shows that the model has an excellent performance. 
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5.2. Recursive Neural Network (RNN) 
 

 
 

Figure-25: A simple recursive neural network architecture[16] 

 
A recursive neural network (RNN) is a type of deep neural network formed by applying on 
the same original set of weights in a recursive manner on a structure to make a structured 
prediction on input structures of varying size, traversing a given structure in topological 
order. In the simplest architecture, a non-linearity such as tanh and a weighting matrix that is 
shared throughout the network are used to combine nodes in parents. 
 

5.3. Recurrent Neural Network (RNN) 
A recurrent neural network (RNN), unlike a feedforward neural network, is a variant of a 
recursive artificial neural network in which the connections between the neurons make a 
directed cycle. It means that the output depends not only on the current inputs but also on 
the neuronal state of the previous step. This memory allows users to solve NLP problems 
such as handwriting recognition or voice recognition. In a document, Generation of natural 
language, paraphrasing and summary of revisions of users with recurring neural networks, 
the authors demonstrate a recurrent neural network model (RNN) that can generate novel 
sentences and document summaries. 
Siwei Lai, Liheng Xu, Kang Liu and Jun Zhao created a recurrent convolutional neural 
network for text classification without human-designed functions and described it in recurrent 
convolutional neural networks for text classification. His model was compared with existing 
text classification methods such as Bag of Words, Bigrams + LR, SVM, LDA, Tree Kernels, 
Recursive Neural Network and CNN. It was shown that their model exceeds the traditional 
methods for all the data sets used. 
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5.4. Long Short-Term Memory (LSTM) 
 

 
 

Figure-26: A peephole LSTM block with input, output, and forget gates[16] 
 
 

A specific recurrent neural network (RNN) architecture is the LSTM(Long Short-Term 
Memory) that was designed to model a temporal sequences with their long-range 
dependencies what is bit more accurately than a conventional RNNs. LSTM does not use 
the activation function within its recurring components, the stored values are not modified 
and the gradient does not tend to disappear during training. In general, LSTM units are 
implemented in "blocks" with several units. These blocks have three or four "doors" (for 
example, entrance door, forgetting door, exit door) that control the flow of information that is 
based on the logistics function. 

However, Apple, Amazon, Google, Microsoft and other companies incorporated LSTM as a 
fundamental element in their products. 
 

5.5. Sequence-To-Sequence models 
In general, a sequence-to-sequence model consists of two recurrent neural networks: an 
encoder that processes the input and a decoder that produces the output. The encoder and 
the decoder may use the same or different sets of parameters. 

Sequence to sequence models are mainly used in answering systems for questions, 
chatbots and machine translation. Such multilayer cells have been used successfully in 
sequence-to-sequence models for translation in the Sequence to Sequence Learning with 
Neural Networks study. 

In a Paraphrase Detection method Using Recursive Autoencoder, a well established 
recursive autoencoder architecture is presented. Representations are vectors in a n-
dimensional semantic space where sentences with similar meanings are close to each other. 
 

5.6. Shallow Neural Networks 
Shallow models are also popular and useful tools. For example, a word2vec is a group of 
two-layer surface models that are used to produce word inlays. Presented in Efficient 
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Estimation of Representations of Words in Vector Space, word2vec takes a large corpus of 
text as input and produces a vector space. Each word in the corpus obtains the 
corresponding vector in this space. The distinctive feature is that the words from common 
contexts in the corpus are located close to each other in the vector space. 

 

Why CNN is smarter way to train a data set  
Not to feed the entire images in our neural network as a grid of numbers, instead of doing 
that we are going to do something much better way that takes advantage of the idea that an 
object is the same no matter where it appears in an image. 

This is how it will work, step by step: 

Step 1: Divide the image into overlapping tiles, over the entire original image let's move a 
sliding window and save each result as a small and separate image mosaik: 

 

 
 

Figure-27[15] 

By doing this, we converted our original image into 77 small mosaics of images of equal 
size. 

Step 2: Feed each image mosaic into a small neural network 

Previously, we introduced a single image in a neural network to see if it was an "8". We will 
do exactly the same here, but we will do it for each individual image mosaic: 
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Figure-28[15] 
 

 
Like once for each tile, repeat this 77 times. 

However, there can be a big twist: we will keep the same neural network weights for each 
tile in the same original image. We are going to treat each mosaic image equally. If 
something interesting appears in a given mosaic, we will mark it as interesting. 

Step 3: save the results of each tile in a new matrix. We do not want to lose track of the 
layout of the original chips. So we save the result of processing each tile in a grid in the 
same layout as the original image. Does it look like this:   

 

 
Figure-29[15] 
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In other words, we started with a large image and then ended up with a slightly smaller 
matrix that records which sections of our original image were the most interesting. 

Step 4: reduction of samples. The result of Step 3 was a matrix that states which parts of the 
original image are the most interesting. But that set is still quite large:

 

 
Figure-30[15] 

 

To reduce the size of the matrix, we reduce it by means of an algorithm called maximum 
grouping. It sounds elegant, but it's not for nothing! 

We will see each square of 2x2 of the matrix and keep the largest number:  

 

 
Figure-31[15] 
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Incase we find something interesting in any of the four input tiles that make up each 2x2 grid, 
we will keep the most interesting bit. This reduces the size of our matrix while keeping the 
most important bits. 

Final step: make a prediction 

So far, we have reduced a giant image to a fairly small matrix. 

Guess what? That matrix is just a group of numbers, so we can use that small matrix as 
input into another neural network. This final neural network will decide whether the image is 
or does not match. To differentiate it from the convolution step, we call it a "totally 
connected" network. 

Therefore, from start to finish, our entire five-step pipeline looks like this:

 
Figure-32[15] 

 

Add even more steps 

Our line of image processing is a series of steps: convolution, maximum use and finally a 
fully connected network. 

When solving problems in the real world, these steps can be combined and stacked as many 
times as you want. It can have two, three or even ten layers of convolution. You can add the 
maximum grouping where you want to reduce the size of your data. 

The basic idea is to start with a large image and gradually reduce it, step by step, until it 
finally has a single result. However, the more complicated features your network can 
recognize if more convolution steps you have. 

For example, the first convolution step could learn to recognize sharp edges, the second 
convolution step could recognize peaks using its knowledge of sharp edges, the third step 
could recognize whole birds using their knowledge of peaks, etc. 



28 | P a g e  
 

This is what seems to be a more realistic deep convolutional network (like the one you would 
find in a research paper):

 
 

Figure-33[15] 
 
 
In this case, they start an image of 224 x 224 pixels, apply the convolution and the maximum 

grouping twice, apply the convolution 3 more times, apply the maximum combination and 

then have two totally connected layers. The final result is that the image is classified in one 

of the 1000 categories. 

Convolutional Neural Networks (CNNs / ConvNets) 
 The convolutional neural networks are very similar to the ordinary neural networks. They are 

formed by neurons and that have weights and biases that can be learned. Each neuron 
receives some inputs, makes a knitted product and optionally follows it with a non-linearity. 
The entire network still expresses a unique distinguishable scoring function: from the pixels 
of the unformatted image on one end to the class scores on the other. And they still have a 
loss function (for example, SVM / Softmax) in the last layer (fully connected) and all the tips / 
tricks that we developed to learn regular neural networks are still applied. 
The ConvNet architectures explicitly assume that the entries are images, however, that 
allows to encode certain properties in the architecture. These make the forwarding function 
more efficient to implement and greatly reduce the number of parameters in the network. 

  

Architecture Overview: 
 Recall: regular neural networks. However, each hidden layer is made of a set of neurons 

and each neuron is completely connected to all the neurons in the previous layer, and where 
the neurons in a single layer operate completely independently and do not share any 
connection. The last fully connected layer is called the "output layer" and in the classification 
configuration it represents the class scores. 

Regular neural networks do not adapt well to complete images. In CIFAR-10, the images are 
only 32x32x3 (32 wide, 32 high, 3 color channels), so a single neuron totally connected in a 
hidden first layer of a normal neural network would have 32 * 32 * 3 = 3072 pesos. This 
amount seems manageable, but it is evident that this completely connected structure does 
not adapt to larger images. For example, a more respectable size image, p. 200x200x3, 
would lead to neurons that have 200 * 200 * 3 = 120,000 pesos. On the other hand, it is 
almost certain that we would like to have several of these neurons, so the parameters would 
add up quickly. Clearly, this complete connectivity is a waste and the large number of 
parameters would quickly lead to an excessive adjustment. 
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3D volumes of neurons. In CNN, the input consists of images and restricts the architecture in 
a more sensible way. In particular, the layers of a ConvNet have neurons arranged in 3 
dimensions: width, height, depth. The neurons in a layer will only be connected to a small 
region of the previous layer, instead of all the neurons in a totally connected way. In addition, 
the final output layer for CIFAR-10 has dimensions of 1x1x10, because at the end of the 
ConvNet architecture we will reduce the entire image in a single vector of class scores. Here  
is a visualization:

  
 Figure-34[17] 

 
 
Left: a 3-layer regular neural network. Right: A ConvNet organizes its neurons in three 
dimensions (width, height, depth), as shown in one of the layers. Each layer of a ConvNet 
transforms the 3D input volume into a 3D output volume of neuronal activations. 

A ConvNet is composed of layers. Layers used to build ConvNets 

A simple ConvNet is a sequence of layers, volume of activations into another through 
function. We use three main types of layers to build ConvNet architectures: convolutional 
layer, grouping layer and fully connected layer (exactly as seen in normal neural networks). 
We will stack these layers to form a complete ConvNet architecture. 

Example architecture: general description. We will go into more details below, but a simple 
ConvNet for the CIFAR-10 classification could have the architecture [INPUT - CONV - RELU 
- POOL - FC]. More details: 
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INPUT of similar [32x32x3] will support the pixel values without formatting the image, in this 
case an image of width 32, height 32 and with three color channels R, G, B. 

The CONV layer will calculate the output of the neurons that are connected to the local 
regions in the input, each calculating a scalar product between its weights and a small region 
to which they are connected in the input volume. This can generate a volume like [32x32x12] 
if we decide to use 12 filters. 

The RELU layer will apply an activation function for elements, such as maximum (0, x) 
maximum (0, x) at zero. This leaves the volume size unchanged ([32x32x12]). 

The POOL layer will perform a sampling reduction operation along the spatial dimensions 
(width, height), resulting in a volume such as [16x16x12]. 

The FC layer (ie fully connected) will calculate the class scores, which will result in a volume 
size [1x1x10], where each of the 10 numbers corresponds to a class score. As with ordinary 
neural networks, and as the name implies, each neuron in this layer will connect to all the 
numbers in the previous volume. 

With this approach, from the original pixel values to the final class scores, ConvNets 
transforms the original image layer by layer  Note that some layers contain parameters and 
others do not. In particular, the CONV / FC layers perform transformations that are a function 
not only of the activations in the input volume, but also of the parameters (the weights and 
biases of the neurons).  The parameters in the CONV / FC layers will be trained with 
gradient slope so that the class scores that ConvNet computes are consistent with the labels 
in the training set for each image. 

In summary: 
A ConvNet architecture is, in the simplest case, a list of layers that transform the volume of 
the image into an output volume (for example, maintaining the class scores) 

There are some different types of layers (for example, CONV / FC / RELU / POOL are by far 
the most popular) 

Each layer accepts a 3D input volume and transforms it into a 3D output volume through a 
differentiable function 

Each layer may or may not have parameters (for example, CONV / FC do, RELU / POOL 
no) 

Each layer may or may not have additional hyperparameters (for example, CONV / FC / 
POOL do, RELU does not) 
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Figure-35[17] 

Activations of an example ConvNet architecture. The initial volume stores the pixels of the 
raw image (left) and the last volume stores the class scores (right). Each volume of 
activations along the processing path is displayed as a column. Since it is difficult to 
visualize volumes in 3D, we place the divisions of each volume in rows. The last layer 
volume contains the scores of each class, but here we only visualize the 5 main classified 
scores and print the labels of each one. The complete web-based demo is shown in the 
header of our website. The architecture shown here is a small VGG network, which will be 
discussed later. 

Now we describe the individual layers and the details of their hyperparameters and their 
connectivities.  
 

Convolutional Layer 
 The Conv layer is the basic component of a Convolutional Network that performs most of 
the computational heavy lifting. 
Overview and intuition without brain things. First, let's analyze what the CONV layer 
calculates without the brain / neuron analogies. The parameters of the CONV layer consist 
of a set of filters that can be learned. Each filter is spatially small (wide and high), but 
extends through the total depth of the input volume. For example, a typical filter in a first 
layer of a ConvNet could have a size of 5x5x3 (that is, 5 pixels wide and high, and 3 
because the images have depth 3, the color channels). During the forward pass, we slide 
(more precisely, we convolve) each filter across the width and height of the input volume and 
calculate the point products between the filter inputs and the input at any position. As we 
slide the filter over the width and height of the input volume we will produce a two-
dimensional activation map that provides the responses of that filter in each spatial position. 
Intuitively, the network will learn the filters that are activated when they see some kind of 
visual characteristic, such as an edge of some orientation or a spot of some color in the first 
layer, or eventually whole patterns in the shape of a wheel or honeycomb in the upper layers 
of network . Now, we will have a complete set of filters in each CONV layer (for example, 12 
filters), and each of them will produce a two-dimensional activation map separately. We will 
stack these activation maps along the depth dimension and produce the output volume.  
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The brain view: If you are a fan of the brain / neuron analogies, each input in the 3D 

output volume can also be interpreted as an output of a neuron that only looks at a small 
region in the input and shares parameters with all the neurons on the left and spatially right 
(since all these numbers result from applying the same filter). Now we will discuss the details 
of the neural connectivity, its disposition in space and its distribution scheme of parameters. 
 

Local Connectivity: It is not practical to connect the neurons to all the neurons in the 

previous volume when it comes to high-dimensional inputs such as images. Instead, we will 
connect each neuron to only one local region of the input volume. The hyperparameter calls 
the receptive field of the neuron. The connectivity along the depth axis is always. It is always 
important to emphasize again on this asymmetry in the way we are going to treat the spatial 
dimensions and the depth dimension: the connections are local in space (width and height), 
but always along the entire depth of the input volume. Example 1. Suppose, for example, 
that the input volume has a size [32x32x3], (for example, a RGB image CIFAR-10). If the 
receptive field (or filter size) is 5x5, then each neuron in the convective layer will have 
weights in a region [5x5x3] in the input volume, for a total of 5 * 5 * 3 = 75 pesos (y + 1 bias) 
parameter). Note that the extension of the connectivity along the depth axis must be 3, since 
this is the depth of the input volume. 

Example 2. Suppose that an input volume has a size [16x16x20]. Then, using an example 
receptive field size of 3x3, each neuron in the convective layer would now have a total of 3 * 
3 * 20 = 180 connections to the input volume. Note that, once again, the connectivity is local 
in space (for example, 3x3), but complete along the entry depth (20).
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Figure-36[17] 

 
Left: a sample input volume in red (for example, a CIFAR-10 image of 32x32x3) and an 
example volume of neurons in the first Convolutional layer. In a convolutional layer each 
neuron is connected in full depth to a local region. Note that there are multiple neurons (5 in 
this example) along the depth, all looking at the same region at the entrance; see the 
explanation of the depth columns in the following text. Right: the neurons of the neural 
network chapter remain unchanged: they still calculate a point product of their weights with 
the input followed by a non-linearity, but now their connectivity is restricted to being spatially 
local. 
 

Spatial arrangement: Already explained the input volume of each neuron in a CNN with 

the and not yet discussed about how many neurons there are in the output. Three 
hyperparameters control the size of the output volume: depth, stride and zero fill. We talk 
about these below: 
Depth: First, the depth of the output volume is a hyperparameter: it corresponds to the 

number of filters that we would like to use, each one learning to look for something different 
in the input. For example, if the first convolutional layer takes the raw image as input, then 
different neurons along the depth dimension may be activated in the presence of several 
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oriented edges. Here we refer to a set of neurons that belong at the same region of the 
entrance as a column of depth. 

Stride: Second, we must specify the stride with which we slide the filter. When the stride is 

1, we move the filters one pixel at a time. When the stride is two. 

Zero-padding: Zero-padding: As we will see soon, it will sometimes be convenient to fill the 

input volume with zeros around the edge. The size of this zero fill is a hyperparameter. The 
good feature of the zero fill is that it will allow us to control the spatial size of the output 
volumes. 
We can calculate the spatial size of the output volume as a function of the size of the input 
volume (WW), the size of the receptive field of the Conv Layer neurons (FF), the stride with 
which they are applied (SS) and the amount of zero padding used (PP) on the edge. You 
can convince yourself that the correct formula for calculating how many neurons "fit" is given 
by (WF + 2P) / S + 1 (WF + 2P) / S + 1. For example, for a 7x7 input and a 3x3 filter with 
Stride 1 and pad 0 would get a 5x5 output. With stride 2 we would obtain a 3x3 output. 
Let'salso see another graphic example:

 
 

Figure-37[17] 
 

Illustration of the spatial arrangement. In this example, there is only one spatial dimension (x 
axis), one neuron with a receptive field size of F = 3, the input size is W = 5, and there is no 
fill of P = 1. Left: the neuron with striae through the stride entrance of S = 1, giving size 
output (5 - 3 + 2) / 1 + 1 = 5. Right: the neuron uses stride of S = 2, giving size output (5 - 3) 
+ 2) / 2 + 1 = 3. Note that stride S = 3 could not be used, since it would not fit perfectly in the 
volume. In terms of the equation, this can be determined since (5 - 3 + 2) = 4 is not divisible 
by 3. 

The weights of the neurons are in this example [1,0, -1] (shown on the right), and their bias 
is zero. These weights are shared in all yellow neurons (see the shared use of parameters 
below). 

Use of zero fill. In the previous example on the left, note that the input dimension was 5 and 
the output dimension was the same: also 5. This worked because our receptive fields were 3 
and we used zero fill of 1. If no fill was used zero, then the output volume would have had a 
spatial dimension of only 3, because that's the number of neurons that would "fit" into the 
original input. In general, setting the zero fill as P = (F-1) / 2P = (F-1) / 2 when the stride is S 
= 1S = 1 ensures that the input volume and output volume will be spatially the same size . It 
is very common to use zero padding in this way and we will discuss the full reasons when 
we talk more about ConvNet architectures. 
 

Restrictions on progress. Notice again that the hyperparameters of spatial arrangement have 
mutual restrictions. For example, when the input has a size W = 10W = 10, zero padding is 
not used P = 0P = 0, and the filter size is F = 3F = 3, then it would be impossible to use 
stride S = 2S = 2, since (WF + 2P) / S + 1 = (10-3 + 0) /2+1=4.5 (WF + 2P) / S + 1 = (10-3 + 
0) / 2 + 1 = 4.5, that is, it is not an integer, which indicates that the neurons do not "fit" neatly 
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and symmetrically through the input. Therefore, this configuration of the hyperparameters is 
considered invalid, and a ConvNet library could throw an exception or zero pad the rest so 
that it fits, or cut the entry to fit, or something. As we will see in the ConvNet architectures 
section, sizing the ConvNets properly so that all the dimensions "work" can be a real 
headache, that the use of zero fill and some design guidelines will significantly alleviate. 

Example of the real world. The architecture that won the ImageNet challenge in 2012 
accepted images of size [227x227x3]. In the first convolutional layer, he used neurons with 
receptive field size F = 11F = 11, stride S = 4S = 4 and no zero fill P = 0P = 0. As (227 - 11) / 
4 + 1 = 55, and as the Conv layer had a depth of K = 96K = 96, the output volume of the 
Conv layer had a size [55x55x96]. Each of the 55 * 55 * 96 neurons in this volume was 
connected to a region of size [11x11x3] in the input volume. In addition, the 96 neurons in 
each depth column are connected to the same region [11x11x3] of the input, but of course 
with different weights. As a diversion aside, if you read the current document, it states that 
the input images were 224x224, which is undoubtedly incorrect because (224 - 11) / 4 + 1 is 
quite clear that it is not a whole number. This has confused many people in the story of 
ConvNets and little is known about what happened. 

 

Parameter Sharing  

The parameter sharing scheme is used in Convolutional layers to control the number of 
parameters. Using the previous real-world example, we see that there are 55 * 55 * 96 = 
290,400 neurons in the first Conv Layer, and each has 11 * 11 * 3 = 363 weights and 1 bias. 
Now, this adds 290400 * 364 = 105,705,600 parameters. Truely this number is very high. 

It turns out that we can drastically reduce the number of parameters by making a reasonable 
assumption: that if a characteristic is useful for calculating at some spatial position (x, y), 
then it should also be useful to calculate at a different position (x2), y2). In other words, by 
denoting a single two-dimensional portion of depth as a depth cut (for example, a volume of 
size [55x55x96] has 96 depth cuts, each of size [55x55]), we will restrict the neurons in each 
depth segment to use the same weights and biases. With this parameter distribution 
scheme, the first convection layer in our example would now have only 96 unique sets of 
weights (one for each depth segment), for a total of 95 * 11 * 11 * 3 = 34,848 unique weights 
or 34,944 parameters (+96 biases). Alternatively, all 55 * 55 neurons in each depth sector 
will now use the same parameters. During backpropagation, each neuron in the volume will 
calculate the gradient for its weights, but these gradients will be added in each depth sector 
and will only be updated a single set of weights/segment. 

Note that if all neurons in a single depth segment are using the same weight vector, then the 
forward pass of the CONV layer can be calculated in each depth segment as a convolution 
of the neuron weights with the volume input (hence the name: Convolutional Layer) That is 
why it is common to refer to sets of weights as a filter (or a core), which is convoluted with 
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the input.

 
 

Figure-38[17] 

Sample filters learned by Krizhevsky et al. Each of the 96 filters shown here is of size 
[11x11x3], and each is shared by the 55 * 55 neurons in a depth segment. Note that the 
assumption of sharing parameters is relatively reasonable: if the detection of a horizontal 
edge is important at some location in the image, it should also be intuitively useful at another 
location due to the invariant structure of translation of the images. Therefore, it is not 
necessary to re-learn to detect a horizontal edge in each of the 55 * 55 different locations in 
the output volume of the Conv layer. 

Keep in mind that sometimes the assumption of sharing parameters may not make sense. 
This is especially the case when the input images to a ConvNet have a specific centered 
structure, where we should expect, for example, that completely different characteristics 
would be learned on one side of the image than on the other. A practical example is when 
the input are faces that have been centered on the image. It is expected that different 
specific characteristics of the eye or hair can be learned (and should be) in different spatial 
locations. In that scenario, it is a common way to relax the parameters exchange scheme 
and, instead, simply call the layer Layer locally connected. 

 

Numpy examples: For the above discussion to be more concrete, let us express the same 
ideas, but in the code and with a specific example. Suppose the input volume is a numpy 
matrix X. Then: 

A column of depth (or a fiber) in the position (x, y) would be the activations X [x, y,:]. 

A depth cut, or equivalent to an activation map in depth d, would be the activations X [:,:, d]. 

Conv Layer Example. Suppose that the input volume X has the form X.shape: (11,11,4). 
Suppose further that we do not use zero fill (P = 0P = 0), that the size of the filter is F = 5F = 
5, and that the stride is S = 2S = 2. The output volume, therefore, would have a size spatial 
(11-5) / 2 + 1 = 4, giving a volume with width and height of 4. The activation map in the 
output volume (call it V), it would look like this (only some of the elements are computed in 
this example): 

V [0,0,0] = np.sum (X [: 5 ,: 5,:] * W0) + b0 

V [1,0,0] = np.sum (X [2: 7 ,: 5,:] * W0) + b0 
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V [2,0,0] = np.sum (X [4: 9 ,: 5,:] * W0) + b0 

V [3,0,0] = np.sum (X [6: 11 ,: 5,:] * W0) + b0 

Remember that in numpy, the operation * above denotes the multiplication by elements 
between the matrices. Note also that the weight vector W0 is the weight vector of that 
neuron and b0 is the bias. Here, we assume that W0 has the form W0.shape: (5,5,4), since 
the size of the filter is 5 and the depth of the input volume is 4. Note that at each point, we 
are calculating the scalar product as seen before in ordinary neural networks. In addition, we 
see that we are using the same weight and bias (due to the sharing of parameters), and 
where the dimensions along the width are increasing in steps of 2 (ie, the stride). To build a 
second activation map on the output volume, we would have: 

V [0,0,1] = np.sum (X [: 5 ,: 5,:] * W1) + b1 

V [1,0,1] = np.sum (X [2: 7 ,: 5,:] * W1) + b1 

V [2,0,1] = np.sum (X [4: 9 ,: 5,:] * W1) + b1 

V [3,0,1] = np.sum (X [6: 11 ,: 5,:] * W1) + b1 

V [0,1,1] = np.sum (X [: 5,2: 7,:] * W1) + b1 (example of going y) 

V [2,3,1] = np.sum (X [4: 9,6: 11,:] * W1) + b1 (or both) 
 

we are indexing in the second depth dimension in V because we are computing the second 
activation map readily, and that we now use another different set of parameters (W11). In 
the previous example, we are for brevity omitting some of the other operations that Conv 
Layer would perform to fill in the other parts of the output matrix V. Also, remember that 
these activation maps are often followed element through an activation function as ReLU, 
but this is not shown here. 

Summary. To summarize, the coexistence layer: 

Accepts a volume size W1 × H1 × D1W1 × H1 × D1 

Requires four hyperparameters: 

o Number of KK filters, 

or its spatial extension FF, 

or the SS stride, 

or the amount of zero padding PP. 

Produces a volume size W2 × H2 × D2W2 × H2 × D2 where: 

or W2 = (W1-F + 2P) / S + 1W2 = (W1-F + 2P) / S + 1 

or H2 = (H1-F + 2P) / S + 1H2 = (H1-F + 2P) / S + 1 (ie the width and height are calculated 
equally by symmetry) 
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or D2 = KD2 = K 

Now, enter weights E⋅F⋅D1F⋅E⋅D1 per filter, for a total of (E⋅F⋅D1) ⋅K (E⋅F⋅D1) ⋅K1 weights 
and KK1. 

In the output volume, the depth division dd-th (of size W2 × H2W2 × H2) is the result of 
performing a valid convolution of the dd-th filter on the input volume with a stride of SS, and 
then compensates with dd bias 

A common configuration of hyperparameters is F = 3, S = 1, P = 1F = 3, S = 1, P = 1. There 
are common way for  conventions and rules that motivate these hyperparameters. See the 
ConvNet architectures section below. 
 

Convolution Demo: Below is a demonstration in execution of a CONV layer. Because 3D 

volumes are difficult to visualize, all volumes (input volume (in blue), weight volumes (in red), 
output volume (in green) are displayed with each depth sector stacked in rows. The input 
volume is of size W1 = 5, H1 = 5, D1 = 3W1 = 5, H1 = 5, D1 = 3, and the parameters of the 
CONV layer are K = 2, F = 3, S = 2, P = 1K = 2, F = 3, S = 2, P = 1. That is, we have two 
filters of size 3 × 33 × 3 and apply with a stride of 2. Therefore, the size of the output volume 
has a spatial size (5 - 3 + 2) / 2 + 1 = 3. Also, note that a fill of P = 1P = 1 is applied to the 
input volume, making the outer edge of the input volume zero. display iterates over the 
output activations (green) and shows that each element is calculated by elements multiplying 
the highlighted input (blue) with the filter (red), summarizing it and then compensating the 
result for the bias. 

  

Implementation as Matrix Multiplication: Note that the convolution operation 

essentially performs point products between the filters and the local regions of the input. A 
common implementation pattern of the CONV layer is to take advantage of this fact and 
formulate the forward step of a convolutional layer as a large matrix multiplied as follows: 

The regions of a input image are stretched in columns by an operation commonly called 
im2col. For example, if the entry is [227x227x3] and it will be convoluted with 11x11x3 filters 
in step 4, we would take [11x11x3] blocks of pixels in the input and stretch each block in a 
column vector of size 11 * 11 * 3 = 363 When iterating this process in the entry in stride of 4 
we obtain (227-11) / 4 + 1 = 55 locations along width and height, which leads to an output 
matrix X_col of im2col of size [363 x 3025], where each column is a stretched receptive field 
and there are 55 * 55 = 3025 of them in total. Note that since the receptive fields overlap, 
each number in the input volume can be duplicated in multiple different columns. 

The weights of the CONV layer extend similarly in rows. For example, if there are 96 filters of 
size [11x11x3] this would give a W_row array of size [96 x 363]. 

The result of a convolution is now equivalent to making a large matrix multiply np.dot 
(W_row, X_col), which evaluates the product of points between each filter and each 
receptive field location. In our example, the output of this operation would be [96 x 3025], 
giving the output of the scalar product of each filter in each location. 

The result must finally be reconfigured in its proper output dimension [55x55x96]. 
This approach has the disadvantage that it can use a lot of memory, since some values in 
the input volume are replicated several times in X_col. However, the benefit is that there are 
many very efficient implementations of the Matrix Multiplication that we can take advantage 
of (for example, in the commonly used BLAS API). In addition, the same idea of im2col can 
be reused to perform the grouping operation, which we will discuss below. 
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Backpropagation: The backward pass for a convolution operation (for data and weights) 

is also a convolution (but with spatially inverted filters). This is easy to obtain in the one-
dimensional case with a toy example (not expanded at the moment). 

Convolution 1x1. On the other hand, several documents use 1x1 convolutions, as first 
investigated by the network in the network. Some people get confused at the beginning 
when they see the 1x1 convolutions, especially when they come from the processing of 
background signals. Normally, the signals are two-dimensional, so the 1x1 convolutions do 
not make sense. In a ConvNets this is not the scenario as it operates in three-dimensional 
volumes where as that the filters always extend through the total depth of the input volume. 
For example, if the input is [32x32x3], then making 1x1 convolutions would be to make 
three-dimensional products (since the input depth is 3 channels). 
 

Extended Circumbances: A recent development introduces a hyperparameter to the 

CONV layer called dilation. So far we have only discussed the CONV filters. However, it is 
possible to have filters that have spaces between each cell, called dilation. As an example, 
in a dimension, a filter w of size 3 would calculate in the input x the following: w [0] * x [0] + w 
[1] * x [1] + w [2] * x [2] . This is dilation of 0. For dilation 1, the filter would calculate w [0] * x 
[0] + w [1] * x [2] + w [2] * x [4]; In other words, there is a space of 1 between the 
applications. This can be very useful in some environments to use together with filters with 
expansion 0 because it allows you to combine the spatial information between the inputs 
much more aggressively with fewer layers. For example, if you stack two CONV 3x3 layers 
one on top of the other, you can convince yourself that the neurons in the 2nd layer are a 
function of a 5x5 patch of the input (we could say that the effective receptive field of these 
neurons is 5x5) . If we use dilated convolutions, this effective receptive field will grow much 
faster. 

Pooling Layer 
It is common to periodically insert a Pooling layer between successive layers of Conv in a 
ConvNet architecture. Pooling Layer works as independently in each depth sector of the 
input and resizes it spatially manner by using the MAX operation there. The most common 
form is a grouping layer with filters of size 2x2 applied with a stride of 2 descending samples 
each cut of depth in the entrance by 2 along width and height, discarding 75% of the 
activations. Each MAX operation in this case would take a maximum of 4 numbers (small 
2x2 region in some depth segment). The depth dimension remains unchanged. More 
generally, the grouping layer: 
Accepts a volume size W1 × H1 × D1W1 × H1 × D1 

Requires two hyperparameters: 

or its spatial extension FF, 

or the SS stride, 

Produces a volume size W2 × H2 × D2W2 × H2 × D2 where: 

or W2 = (W1-F) / S + 1W2 = (W1-F) / S + 1 

or H2 = (H1-F) / S + 1H2 = (H1-F) / S + 1 

or D2 = D1D2 = D1 

Enter zero parameters since it calculates a fixed function of the input 
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Note that it is not common to use zero fill to group layers 

It is worth noting that there are only two commonly observed variations of the maximum 
grouping layer encountered in practice: A grouping layer with F = 3, S = 2F = 3, S = 2 (also 
called overlap grouping), and most commonly F = 2, S = 2F = 2, S = 2. Gathering sizes with 
larger receptive fields is too destructive. 

General grouping. In addition to the maximum grouping, the grouping units can also perform 
other functions, such as the average grouping or even the standard grouping L2. The 
average grouping is often used historically, but has recently become out of date compared to 
the maximum grouping operation, which has been shown to work best in practice.

 

 
 

Figure-39[17] 
 
Pooling downsamples reduces the volume spatially, independently in each depth sector of 
the input volume. Left: In this example, the size input volume [224x224x64] is combined with 
the size of filter 2, step 2 on the size output volume [112x112x64]. Note that the depth of the 
volume is preserved. Right: the most common sampling operation is maximum, which results 
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in the maximum accumulation, which is shown here with a step of 2. That is, each maximum 
is taken in 4 numbers (small square of 2x2). 

Backpropagation: Remember, from the backpropagation section, that the backward pass 

for a max (x, y) operation has a simple interpretation, since it only routes the gradient to the 
entry that had the highest value in the direct pass. Therefore, during the forward step of a 
clustering layer it is common to track the maximum activation rate (sometimes also called 
the switches) so that the gradient routing is efficient during inverse propagation. 

Get rid of the commonwealth. Many people do not like the grouping operation and think we 
can escape without it. In case of striving for Simplicity, all Convolutional Net proposes to 
discard the grouping layer in favor of the architecture that only consists of repeated CONV 
layers. To reduce the size of the representation, they suggest using a larger stride in the 
CONV layer from time to time. It has also been found that discarding layers of pooling is 
important for the training of good generative models, such as variational autoencoders (VAE) 
or generative adversarial networks (GAN). It seems likely that future architectures present 
very few or no grouping layers. 

  

Normalization Layer 
  
To use in ConvNet architecture, many types of normalization layers have been proposed 
already. Sometimes with the intention of implementing inhibition schemes observed in the 
biological brain. However, these layers have fallen out of favor since then because in 
practice it has been shown that their contribution is minimal, if any. For several types of 
normalizations, see the discussion in the cuda-convnet library API by Alex Krizhevsky. 

  

Fully-connected layer 
  
Neurons in a fully connected layer have full connections to all activations in the previous 
layer, as seen in normal neural networks. Therefore, their activations can be calculated with 
a multiplication of matrices followed by a displacement of bias. See the Neural Network 
section of the notes for more information. 

  

Converting FC layers to CONV layers 
  
There is only difference between the FC and CONV layers is that the neurons in the CONV 
layer are connected only to a local region at the input. However, the neurons in both layers 
still compute dot products, so their functional form is identical. It is possible to convert 
between FC and CONV layers: 

For any CONV layer there is an FC layer that implements the same forwarding function. The 
weighting matrix would be a large matrix that is mostly zero, except in certain blocks (due to 
local connectivity) where the weights in many of the blocks are equal (due to the sharing of 
parameters). 

On the contrary, any FC layer can be converted to a CONV layer. For example, an FC layer 
with K = 4096K = 4096 that is looking at an input volume of size 7 × 7 × 5127 × 7 × 512 can 
be expressed equivalently as a CONV layer with F = 7, P = 0, S = 1, K = 4096F = 7, P = 0, S 
= 1, K = 4096. In other words, we are setting the filter size to be exactly the size of the input 
volume and, therefore, the output will be simply 1 × 1 × 40961 × 1 × 4096 since only one 
depth column "fits" in the input volume. giving the same result as the initial FC layer. 
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FC-> CONV conversion. From these two conversions, the ability to convert an FC layer to a 
CONV layer is particularly useful in practice. Let take an image of 224x224x3 of ConvNet 
architecture, and after that uses a series of CONV layers and POOL layers to reduce the 
image to a volume of activations of size 7x7x512. From there, an AlexNet uses two FC 
layers of size 4096 and finally the last FC layers with 1000 neurons that calculate the class 
scores. We can convert each of these three FC layers into CONV layers as described 
above: 
 
Replace the first FC layer that looks at the volume [7x7x512] with a CONV layer that uses a 
filter size F = 7F = 7, giving an output volume [1x1x4096]. 

Replace the second FC layer with a CONV layer that uses a filter size F = 1F = 1, giving an 
output volume [1x1x4096] 

Replace the last FC layer in a similar way, with F = 1F = 1, giving final output [1x1x1000] 

Each of these conversions could in practice involve the manipulation (e.g., remodeling) of 
the WW weight matrix in each FC layer in CONV layer filters. With this conversion helps us 
to slide the real ConvNet very appropriately in many spatial positions in a larger image, in a 
single forward pass. 

For example, if the image 224x224 gives a volume size [7x7x512], that is, a reduction of 32, 
forwarding an image of size 384x384 through the converted architecture would give the 
volume equivalent in size [12x12x512], since 384 / 32 = 12. To continue with the next 3 
CONV layers that we just converted from the FC layers would now give the final size volume 
[6x6x1000], since (12 - 7) / 1 + 1 = 6. Note that instead From a single vector of class size 
scores [1x1x1000], we now get a full set of 6x6 class scores in the 384x384 image. 

The evaluation of the original ConvNet (with FC layers) independently in 224x224 cultures of 
the 384x384 image in 32-pixel strides gives an identical result to the forwarding of the 
converted ConvNet once. 

Of course, forwarding the converted ConvNet only one time is much more efficient than 
iterating the original ConvNet in all those 39 locations, since the 39 evaluations share the 
calculation. This trick is often used in practice to get better performance, where, for example, 
it is common to change the size of an image to enlarge it, use a converted ConvNet to 
evaluate class scores in many spatial positions and then average the scores of class. 

Finally, what would happen if we wanted to efficiently apply the original ConvNet on the 
image, but at a step smaller than 32 pixels? We could achieve this with multiple passes 
forward. For example, note that if we wanted to use a 16-pixel stride we could do it by 
combining the volumes received when converting ConvNet converted twice: first on the 
original image and second on the image but with the image spatially changed by 16 pixels 
along of width and height. 
  

ConvNet Architectures 
  
We have seen that Convolutional Networks are commonly composed of only three types of 
layers: CONV, POOL (we assume Max pool unless otherwise indicated) and FC 
(abbreviation of fully connected). We will also explicitly write the activation function RELU as 
a layer, which applies non-linearity by elements. In this section we will discuss how these are 
commonly stacked to form complete ConvNets. 

 

Layer Patterns 
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The most common form of a ConvNet architecture is CONV-RELU layers, followed by with 
POOL layers and repeats this pattern until the image has spatially merged to a small size. At 
some point, it is common to make the transition to completely connected layers. The last 
fully connected layer contains the output, like the class scores. In other words, the most 
common ConvNet architecture follows the pattern: 

INPUT -> [[CONV -> RELU] * N -> POOL?] * M -> [FC -> RELU] * G -> FC 

where * indicates repetition and the POOL? indicates an optional grouping layer. In addition, 
N> = 0 (and usually N <= 3), M> = 0, G> = 0 (and usually G <3). For example, here are 
some common ConvNet architectures that you can see that follow this pattern: 

INPUT -> FC, implements a linear classifier. Here N = M = K = 0. 

INPUT -> CONV -> RELU -> FC 

INPUT -> [CONV -> RELU -> POOL]*2 -> FC -> RELU -> FC. Here we see that there is a 
single CONV layer between every POOL layer. 

INPUT -> [CONV -> RELU -> CONV -> RELU -> POOL]*3 -> [FC -> RELU]*2 -> FC, here 
we can see two CONV layers stacked before every POOL layer. This is generally a good 
idea for larger and deeper networks, because multiple stacked CONV layers can develop 
more complex features of the input volume before the destructive pooling operation. 
 
It prefers a small CONV filter stack to a large CONV layer of the receptive field. Suppose you 
stack three CONV 3x3 layers one on top of the other (with nonlinearities between them, of 
course). Each neuron in the first CONV layer has a 3x3 pattern of the input volume, in this 
arrangement. A neuron in the second layer CONV has a 3x3 view of the first CONV layer, 
and therefore, by extension, a 5x5 view of the input volume. Similarly, a neuron in the third 
layer CONV has a 3x3 view of the second CONV layer, and therefore a 7x7 view of the input 
volume. Suppose that instead of these three layers of 3x3 CONV, we would only want to use 
a single CONV layer with 7x7 receptive fields. These neurons would have a receptive field 
size of input volume that is identical in spatial extent (7x7), but with several disadvantages. 
First, the neurons would be computing a linear function on the input, while the three CONV 
layer stacks contain nonlinearities that make their features more expressive. Second, if we 
assume that all volumes have CC channels, then it can be seen that the single CONV 7x7 
layer would contain C × (7 × 7 × C) = 49C2C × (7 × 7 × C) = 49C2 parameters, while the 
three CONV 3x3 layers would only contain 3 × (C × (3 × 3 × C)) = 27C23 × (C × (3 × 3 × C)) 
= 27C2 parameters. Intuitively, stacking CONV layers with small filters instead of having a 
CONV layer with large filters allows us to express more powerful characteristics of the input 
and with fewer parameters. As a practical disadvantage, we may need more memory to 
keep all the intermediate results of the CONV layer if we plan to do a new propagation. 

Recent departures It should be noted that the conventional paradigm of a linear list of layers 
has recently been questioned, in the Google Inception architectures and also in the current 
residual networks of Microsoft Research Asia. Both (see the details below in the case 
studies section) present more intricate and different connectivity structures. 

In practice: use what works best in ImageNet. If you feel a little tired when thinking about 
architectural decisions, you will be pleased to know that in 90% or more of the applications 
you should not worry about this. I would like to summarize this point as "do not be a hero": 
instead of shooting your own architecture for a problem, you should look at the architecture 
that works best in ImageNet, download a pre-established model and fine-tune it in your data. 
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You should rarely train a ConvNet from scratch or design one from scratch. I also made this 
point at the Deep Learning school. 
 

Layer Sizing Patterns 
So far we have omitted the mention of common hyperparameters used in each of the layers 
in a ConvNet. First we will establish the common general rules for sizing the architectures 
and then follow the rules with a discussion of the notation: 

The input layer (which contains the image) should be divisible by 2 many times. Common 
numbers include 32 (for example, CIFAR-10), 64, 96 (for example, STL-10) or 224 (for 
example, Common ImageNet Connets), 384 and 512. 

Conv layers should use small filters (eg 3x3 or maximum 5x5), using a step of S = 1S = 1, 
and the most important thing is to fill the input volume with zeros so that the conv layer does 
not disturb the spatial dimensions of the entrance. That is, when F = 3F = 3, the use of P = 
1P = 1 will retain the original size of the input. When F = 5F = 5, P = 2P = 2. For a general 
FF, it can be seen that P = (F-1) / 2P = (F-1) / 2 preserves the input size. If you must use 
larger filter sizes (such as 7x7 or so), it is common to see this in the first conv layer that is 
looking at the input image. 
 
The group layers are responsible for reducing the resolution of the spatial dimensions of the 
entrance. The most common configuration is to use the maximum combination with 2x2 
receptive fields (that is, F = 2F = 2) and with a stride of 2 (that is, S = 2S = 2). Note that this 
discards exactly 75% of the activations in an input volume (due to the reduction of sampling 
in 2 in width and height). Another slightly less common configuration is to use 3x3 receptive 
fields with a step of 2, but this does. It is unlikely to see receptive field sizes for the maximum 
combination that are larger than three because the grouping is too slow and aggressive. This 
usually leads to worse performance. 

Reduce size headaches. The scheme presented above is nice because all the CONV layers 
retain the spatial size of their input, while the POOL layers alone are in charge of sampling 
the volumes spatially. In an alternative scheme where we use strides greater than 1 or do 
not fill with zeroes the input in CONV layers, we would have to follow very carefully the input 
volumes in the entire CNN architecture and make sure that all the steps and filters work. out 
", and that the ConvNet architecture is wired nicely and symmetrically. 

  
Why use stride of 1 in CONV?  
  
Small steps work best in practice. In addition, as already mentioned, trench 1 allows us to 

leave all the spatial descending sampling in the POOL layers, with the CONV layers 

transforming the input volume only in depth. 

  
Why use padding?  
  
In addition to the aforementioned benefit of maintaining constant spatial sizes after CONV, 
doing this actually improves performance. If the CONV layers did not fill the entries with 
zeros and only make valid convolutions, then the size of the volumes would be reduced by a 
small amount after each CONV, and the information on the edges would be "washed" too 
quickly. 
Commitment based on memory restrictions. In some cases (especially at the beginning of 
the ConvNet architectures), the amount of memory can be accumulated very quickly with the 
general rules presented above. For example, filtering a 224x224x3 image with three 3x3 
CONV layers with 64 filters each and a fill 1 would create three size activation volumes 
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[224x224x64]. This can equate to a total of around 10 million activations process, or 72 MB 
of memory. However, GPUs are usually downed by memory. In practice, people prefer to 
engage only in the first CONV layer of the network. For example, a compromise could be to 
use a first CONV layer with filter sizes of 7x7 and step of 2 (as seen in a ZF network). As 
another example, an AlexNet uses filter sizes of 11x11 and step of 4. 
 

 

 

6. Caffe Framework  
 
Caffe provides a complete set of tools for training, testing, adjusting and implementing 
models, with well-documented examples for all these tasks. As such, it is an ideal starting 
point for researchers and other developers seeking to access state-of-the-art machine 
learning. At the same time, it is probably the fastest available implementation of these 
algorithms, so it is immediately useful for industrial implementation. 
 

6.1. Highlights of Caffe 
 

Modularity: The software is designed from the start to be as modular as possible, allowing 

easy extension to new data formats, network layers and loss functions. Many of the layers 
and loss functions are already implemented, and abundant examples show how they are 
composed of trainable recognition systems for various tasks. 
 

Separation and implementation: Caffe model are defined as configuration files used by 
the buffer languages of protocol. Caffe also supports a directed acyclic graphics form of 
network architectures. Upon instantiation, Caffe reserves exactly as much memory as 
necessary for the network and abstracts from its underlying location on the host or GPU. The 
change between a CPU and GPU implementation is exactly a function call. 

Test coverage. Each module in Caffe has a test, and no new code is accepted in the project 
without the corresponding tests. This allows rapid improvements and refactoring of the code 
base, and imparts a welcome sense of reassurance to researchers using the code. 
 

Links of Python and MATLAB: For rapid prototyping and the interface with the existing 

research code, Caffe provides Python and MATLAB links. Both languages can be used to 
build networks and classify entries. Python links also expose the solution module for easy 
prototyping of new training procedures. 

 

Pre-trained reference models: Caffe provides (for academic and non-commercial use, no 

BSD license) reference models for visual tasks, including the "AlexNet" ImageNet model with 
variations and the R-CNN detection model. More are scheduled for the launch. Caffe model 
are defined as configuration files used by the buffer languages of protocol. Caffe supports a 
directed acyclic graphics form of network architectures. Upon instantiation, Caffe reserves 
exactly as much memory as necessary for the network and abstracts from its underlying 
location on the host or GPU. The change between a CPU and GPU implementation is 
exactly a function call. 
Test coverage. Each module in Caffe has a test, and no new code is accepted in the project 
without the corresponding tests. This allows rapid improvements and refactoring of the code 
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base, and imparts a welcome sense of reassurance to researchers using the code.  

 
Table 1: Comparison of popular deep learning frameworks[2] 

 

 

7. Euclidean Distance 
 
The Euclidean distance is the simple distance of straight line between two points on a 
Euclidean space. Then the Euclidean space becomes a metric space with this distance. The 

associated norm is called the Euclidean norm. Older literature refers to the metric as 

Pythagorean metric. 
 
The Euclidean distance between points p and q is the length of the line segment that 

connects them  In Cartesian coordinates, if p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) 
are two points in euclidean e-space, then the distance (d) of p to q, or q to p is given by the 
formula of Pythagoras: 
 

 
 
The position of a point in a Euclidean n-space is a Euclidean vector. Then, p and q are 
Euclidean vectors, starting from the origin of space, and their suggestions indicate two 
points. The Euclidean norm, or Euclidean length, or the magnitude of a vector measures the 
length of the vector: 

 

where as the last equation includes the dot product. 
 

A vector can be stated as a line segment started from the origin of the Euclidean space to 
vector point. If we consider that its length is really the distance from its tail to its tip, then the 
Euclidean norm of a vector is only a special case of Euclidean distance, whereas the 
Euclidean distance between its tail and its tip. 
The distance between points p and q can have an address (for example, from p to q), so it 
can be represented by another vector, given by 

 

https://en.wikipedia.org/wiki/Straight_line
https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Straight_line
https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Norm_%28mathematics%29
https://en.wikipedia.org/wiki/Norm_%28mathematics%29#Euclidean_norm
https://en.wikipedia.org/wiki/Dot_product
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One dimension 

In Euclidean geometry, setting two points on a line and choosing one to be the origin to 
established metric. The length of the line segment between these points defines the unit of 
distance and the direction from the origin to the second point is defined as the positive 
direction. This line segment can be translated along the line to construct longer segments 
whose lengths correspond to multiples of the distance of the unit. In this way, real numbers 
can be associated with points on the line (such as the distance from the origin to the point) 
and these are the Cartesian coordinates of the points on what can now be called the real 
line. As an alternative way to set the metric, instead of choosing two points on the line, 
choose a point to be the origin, a unit of length, and an address along the line to call 
positive. The second point is determined uniquely as the point on the line that is at a 
distance from a positive unit of the origin. 
The distance between any two points on the real line is the absolute value of the numerical 
difference of its coordinates. It is common to identify the name of a point with its Cartesian 
coordinate. Therefore, if p and q are two points on the real line, then the distance between 
them is given by: 
 

 

Two dimensions 

In the Euclidean plane, if p = (p1, p2) and q = (q1, q2) then the distance is given by 
 

 

Three dimensions 

In three-dimensional Euclidean space, the distance is 
 

 

n dimensions 

In general, for an n-dimensional space, the distance is 
 

 

 

 

8. Change Point Analysis 
 
Abrupt changes respect of time series is known as change point and detecting this point is 

Change point detection. The change point detection is applied in weather forecasting, 

detecting bank transaction fraud, image analyses, and classified data in data analysis, 

human activity and medical science. Many methodologies are applied to detect change point 

in time series.  Since all methods are capturing Change Point, it is difficult to detect which 
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method is appropriate for a particular field. So, that we are learning and getting the basic 

concept behind those methods.  

There are many questions that a researcher can take into account when performing a 
change point analysis. Some of these include: 
 

 Has a change occurred? 

 If yes, where is the change? 

 What is the difference between the data of previous and subsequent change? 
o This may be the exchange rate 
o and / or the values of the parameters before and after the change. 

 What is the probability that a change has occurred? 

 How safe are we from the location of the change point? 

 How many changes have occurred (+ all of the above for each change)? 

 Why has there been a change? 

 
Here we are going to discuss about E-divisive, Multirank, KCP and DeCon methods.  
 
8.1. E-divisive  

E-divisive detects change points by quantifying how different are the characteristic functions 

of the distributions of later segments of the time series. In fact, the characteristic functions 

uniquely describe a probability distribution, the changes in the distribution of characteristic 

distribution of the signal. This method combines the measure of multivariate divergence. 

 First we discuss multivariate divergence measure here. 

8.1.1 Measuring Differences in Multivariate Distributions 

For complex-valued functions φ(·), the complex conjugate of φ̅ is denoted by φ, and the 

absolute square |φ|2 is defined as φφ̅̅ ̅̅ . The Euclidean norm of x ∈  Rd is |x|d, or simply |x| 

when there is no ambiguity. A primed variable such as Xj is an independent copy of X; that 

is, X and Xj are independent and identically distributed. 

                …. (i) 

In which w(t) denotes here an arbitrary positive weight function, for which the above integral 

exists. We use the following weight function, 

     ….(ii) 

 
 
for some fixed constant α ∈  (0, 2). Then, if E|X|α, E|Y |α < ∞, a characteristic function 

based divergence measure may be defined as 
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… (iii) 

Suppose X, Xj , Fx and Y, Y j Fy, and that X, Xj, Y, and Y j are mutually independent.  If 

E|X|α, E|Y |α < ∞, then we may employ an alternative divergence measure based on 

Euclidean distances,  

 

              ..(iv) 

Lemma 1, for any pair of independent random vectors X, Y ∈  Rd, and for any α ∈  (0, 2), if 

E(|X|α + |Y |α) < ∞, then E(X, Y ; α) = D(X, Y ; α), E(X, Y ; α) ∈  [0, ∞), and E(X, Y ; α) = 0 if 

and only if X and Y are identically distributed. 

The Lemma 1 motivates a simple empirical divergence measure for multivariate 

distributions based on a U -statistics. Let Xn = {Xi : i = 1, . . . , n} and Y m = {Yj : j = 1, . . . , 

m} be independent iid samples from the distribution of X, Y ∈  Rd, respectively, such that 

E|X|α, E|Y |α < ∞ for some α ∈  (0, 2). Then an empirical divergence measure analogous to 

Equation (4) may be defined as 

 

 

….(v) 

Additionally, under the null hypothesis of equal distributions, i.e., E(X, Y ; α) = 0, we note that  

2

mn
E (Xn, Y m; α) converges in distribution to a non-degenerate random variable as m ∧  n → 

∞. 

Further, under the alternative hypothesis of unequal distributions, i.e., E(X, Y ; α) > 0, we 

note that mn E (Xn, Y m; α) → ∞ almost surely as m ∧ n → ∞. These asymptotic Estimating 

the Location of a Change Point 

                  
                                      ….(vi) 

 
8.1.2. KCP 
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The Kernel Change Point (KCP) method proposed for detects change points by evaluating 

how similar or dissimilar the scores at the observed time points are to each other. To this 

end, the observations are transformed to similarities by means of a kernel function. 

1. Compute pairwise similarities using a Gaussian kernel function. 

 For each pair of observations, X i and X j , the pairwise similarity is computed using a 

Gaussian kernel function, 

 … (vii) 

The similarities take on values close to 0 when X i and X j are distant and values close to 1 

when X i and X j are similar. The bandwidth, h, is a smoothing parameter that indicates how 

strict one is when deciding if two observations are similar. Here we determined the 

bandwidth using the procedure of Arlot et al. 

1. For different numbers of change points K, minimize the total intra-phase scatter to 

detect their location.  

For varying numbers of change points, K = 0, …, K max , KCP minimizes the following 

criterion across all possible change point locations (τ 1, τ 2, …, τ K ): 

 

Where, V̂k is the intra-phase scatter. V̂k measures how homogeneous the corresponding 

phase is, 

 
8.1.3. Multirank 

Multirank makes use of a homogeneity statistic. Multirank only takes the rank order of the 

scores per variable into account. The method consists of two steps. 

1. Check whether the time series contains at least one significant change point. 

Considering all possible τ-values, the sequence is divided into two 

phases X 1 : τ and X τ + 1 : n . For each τ-value, the dissimilarity of these phases is 

determined by computing the following homogeneity statistic 
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  … (viii) 

Where,  Σ  ̂is the empirical covariance matrix of the rank orders of the scores, and R̅ is a 
phase specific vector containing deviations of the observed mean phase ranks from the 
expected mean phase rank if the whole sequence is homogeneous. In case of homogeneity, 
the rank order of a score is completely random and, thus, the expected mean rank within a 

phase equals 
n+1

2
. However, if a change point segments the sequence into phases with 

different distributions, the rank orders would no longer be random but would depend on the 
distributions. Consequently, deviations from the middle phase are classified from the 
expected range under homogeneity, and therefore also T, would be large. Therefore, to 
decide whether the time series contains at least one change point, the importance of the 
highest T value is tested by computing the associated asymptotic p value under the 
assumption of homogeneity. Details on this calculation, which is based on the Bessel 
functions of the first type and the gamma function. 
 
Equations below shows the T values that were obtained for our illustrative example using 

different values τ, and indicates that τ = 25 gives the highest T value. This implies a possible 

point of change in the twenty-sixth observation. Specifically, the maximum homogeneity 

statistic is equal to 40.27, since 

 

and 

 

In Step 1,  R̅2 is always equal to – R̅1, since we are looking for one change point. When 

considering multiple change points, this property will of course not hold. The associated p-



52 | P a g e  
 

value for the maximal T̂   is 1.38 × 10− 7, confirming that the change point, T = 26, is highly 

significant. Henceforward, we will denote the maximal T̂    as T̂max    to decide on the 

number of change points and on their location. 

 If the change point obtained in Step 1 is found to be significant, multiple change point 

detection is conducted by computing the generalized form of the homogeneity statistic in 

Eq. (iii), where Kdenotes the number of change points, τ 0 = 0 and τ K + 1 = n: 

 (ix) 

8.1.4. DeCon 

DeCon based detection of the point of change in the identification of outliers using robust 

statistics. The method slides a time window of size W along the time series by sequentially 

deleting the first time point in the window and adding a new observation as the last time 

point. By window, it is determined if the last point of time is an outlier with respect to the 

distribution of the other time points in the window. If the latter is the case for multiple 

consecutive windows, this indicates that the observations that are added to the window may 

come from a different distribution and, therefore, that a change point occurred. Specifically, 

DeCon consists of the following four steps.1. 

Apply Robust PCA in each time window and determine “outlyingness” of the last time point. 

 By time window, DeCon calculates a robust multivariate center, μ w, and a covariance 

matrix, Σ w, to determine the distribution of regular observations (standardized by variable 

since we are interested in correlations instead of covariances), and generates a peripheral 

measure for the last time point of the window. To this end, the robust principal components 

approach (ROBPCA) of Hubert et al. it is used [24]. In this document, we keep all the main 

components to avoid the question of how to choose the optimal number of components.1 

Since we use all the components, the measure of distance is the so-called distance of score, 

which is equal to the Mahalanobis distance between the last time point X is the last and the 

robust specific center of the window μ w: 

 (x) 

 
9. Problems with previous approaches 
 

 Can’t distinguish shot-breaks with 
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 Cannot apply to all types of video streams. 

 Fast object motion or Camera motion. 

 Fast Illumination changes 

 Reflections from glass, water 

 Flash photography 
 

 

 Fails to detect long and short gradual transitions 

 

 

9.1. Experiment Details  
9.1.1. Proposed approach 
Video segment detection can be determined online and offline both ways. Here we proposed 
a new and efficient way of segment detection online/automatic. A video is consists of 
different segment of frames. However, each segment can be classified any of the following,  
i) Sharp/Hard transition 
ii) Gradual transition and 
iii) No transition 
Here, we used sliding window technique to do the image classification. A sliding window is a 
rectangular shape region of a fixed width and height that “slides” across an image. We can 
do that iteratively for rest of the images also. 
 We have prepared a learning DB with millions of images. But we did the experiment on a 
set of sample 500(five hundreds) frames(prepared manually with a mix-up of hard and 
gradual cuts). We used sliding window technique on those 500 frames to detect Hard-cuts 
among those. 
 
To make the proposed technique more wide and efficient we introduced a custom CNN 
model, created by us only. This CNN consists of five convolutional layers(refer the table 
below). There all the convolutional layers are followed by ReLU(Rectified Linear Unit). Also, 
there are three fully-connected layers FC6, FC7 and FC8. Those are containing 4096 
neurons each. 
 
We used Caffe to extract and prepare image DB as learning data set. Also the code 
development of Change Point Detection algorithm is done partially. 
 

Layer Kernel Followed by 

Data label  

Conv1 (11x4x0x3) x 96 ReLU 

Pool1   

Conv2 (5 x 1 x 2 x 96) x 256 ReLU 

Pool2   

Conv3 (3 x 1 x 1 x 256) x 384 ReLU 

Conv4 (3 x 1 x 1 x 384) x 384 ReLU 

Conv5 (3 x 1 x 1 x 384) x 256 ReLU 

Pool5   

FC6 4096 ReLU 

Dropout 

FC7 4096 ReLU 

Dropout 

FC8 1000 Dropout 

Softmax Label  
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Table 2: Proposed custom CNN model 
 
Our experiment followed the steps mentioned below, 
 
 
Step 1: Extract video and prepare image DB(Train & Test data set) 

 
Identified any video format(e.g. mp4, .mpg, .wav etc.) 
Extracted video into several frames. 
Created Caffe model(CNN) for preparing training data set. 
Prepared train data set by creating mean image file and .lmbd file. 
Extracting feature from another video frames to prepare test data set and saved in a file. 

 
Step 2: Calculate distance between two images by Euclidean Distance algorithm 
Used Euclidean distance algorithm to measure distance between two feature points of a 
particular frame. 
Apply Log(10) on the output of the above to get the scalable values. 
Generate graphical representation of the distance data. 
Compare with a manually prepared tabular data(data of 500 frames) of Hard-cut and 
Gradual-cut detection with the above graph. To determine the accuracy. 
 
 
Step 3: Apply Change Point Detection algorithm to determine the Hard-cut 
automatically 
Apply Change Point Detection (CPD) algorithm on the data generated by Euclidean Distance 
program. 
Generating graphical representation of CPD data by a standard available tool. 
Compare with a manually prepared tabular data (data of 500 frames) of Hard-cut and 
Gradual-cut detection and the graph generated by Euclidean distance program with the 
above graph. To determine the accuracy and efficiency.  
 
We did the above experiment steps for sample 500 frames. In future we will do the 
continuation of the above steps for next set of test data frames.  
 

 

 

9.1.2. Source Code  
 

<<caffe_feature_extractor.py>> 
 

 

import numpy as np 
import os, sys, getopt 
 
# Main path to your caffe installation 
caffe_root = 'caffe/' 
 
# Model prototxt file : (Model definition: A prototxt file containing the model definition (like the one we 
had earlier)) 
model_prototxt = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt' 
 
# Model caffemodel file ( Learning algorithm: A prototxt file describing the parameters for the 
stochastic gradient algorithm. This is called the solver file.) 
model_trained = caffe_root + 
'examples/imagenet/training_05.05.18/model_train_anni005_iter_1000.caffemodel' 
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# Path to the mean image (used for input processing)(  Mean image: We need to compute the mean 
image of the training dataset) 
#mean_path = caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy' 
mean_path = caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy' 
 

 

# Name of the layer we want to extract 
 
layer_name = 'fc8' 
sys.path.insert(0, caffe_root + 'python') 
import caffe 
 
def main(argv): 
inputfile = '' 
outputfile = '' 
 
try: 
opts, args = getopt.getopt(argv,"hi:o:",["ifile=","ofile="]) 
except getopt.GetoptError: 
print ('caffe_feature_extractor.py -i Wildlife.wmv -o hi.txt') 
sys.exit(2) 
 
for opt, arg in opts: 
if opt == '-h': 
print ('caffe_feature_extractor.py -i Wildlife.wmv -o hi.txt') 
sys.exit() 
elif opt in ("-i"): 
inputfile = arg 
elif opt in ("-o"): 
outputfile = arg 
 
print ('Reading images from "', inputfile) 
print ('Writing vectors to "', outputfile) 
 
# Setting this to CPU, but feel free to use GPU if you have CUDA installed 
    caffe.set_mode_cpu() 
    # Loading the Caffe model, setting preprocessing parameters 
    net = caffe.Classifier(model_prototxt, model_trained, 
                           mean=np.load(mean_path).mean(1).mean(1), 
                           channel_swap=(2,1,0), 
                           raw_scale=255, 
                           image_dims=(256, 256)) 
    
# Processing one image at a time, printint predictions and writing the vector to a file 
    with open(inputfile, 'r') as reader: 
        with open(outputfile, 'wb') as writer: 
            writer.truncate() 
            for image_path in reader: 
                image_path = image_path.strip() 
                input_image = caffe.io.load_image(image_path) 
                prediction = net.predict([input_image], oversample=False) 
                #print (os.path.basename(image_path), ' : ' , labels[prediction[0].argmax()].strip() , ' (', 
prediction[0][prediction[0].argmax()] , ')') 
                np.savetxt(writer, net.blobs[layer_name].data[0].reshape(1,-1), fmt='%f') 
  
if __name__ == "__main__": 
    main(sys.argv[1:]) 
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<<euclidist.py>> 
 
#!/usr/bin/python2.7 
 
#import file 
import numpy as np 
import sys 
import math 
import collections 
#import matplotlib.pyplot as plt 
from scipy.spatial import distance 
  
#count number of line in file 
num_lines = sum(1 for line in open('output_test_new_anni005_9.txt')) 
#initialise two list , 1st for current image , 2nd fr previous image 
list1 = list() 
list2 = list() 
 
file = open("df_anni005_9.txt", "a") 
for i in range(0,num_lines): 
 #print ('i =',i)  
 frame=i 
 prv_frame=frame-1 
 if prv_frame != 0: 
   
  with open('output_test_new_anni005_9.txt') as f: 
   for j, line in enumerate(f,1): 
    if j == frame: #here frame is line number 
     break 
  #for save perticular line caontainting strng   
  with open('output_test_new_anni005_9.txt') as f: 
   for j, pre_line in enumerate(f,1): 
    #here prv_frame is line number 
    if j == prv_frame: 
     break 
 
  list1 = line.split()  
  list2 = pre_line.split()  
   
  length = len(list1) 
  print("length= ",length) 
   
  aList = list() 
  bList = list() 
  #string to float conversion 
  for p in range(0,length): 
   u = float(list1[p]) 
   v = float(list2[p]) 
   # new list containg float type data  
   aList.append(u); 
   # new list containg float type data    
                  List.append(v);  
   # caluate euclidean distance beween two list  
   dist = distance.euclidean(aList,bList)   
   
   #log of difrence bewteen two images 
  # log of  negative or Zero  value not allow  
  if dist > 0.0: 
                  df_file_print_value=str(math.log(dist)) 
   file.write(df_file_print_value)  
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   file.write('\n') 
   
file.close()   

 

 

9.1.3.Proposed custom CNN model 
 
 
 

  

 

 
9.1.4. Experimental Result 
 
We used as many as data set of 500 frames to do the experiment. The frames are contained 
many video clips and from various situations. The output from our proposed algorithm were 
good and it was able to detect almost all cuts. We observed from the CPD graph that the two 
cuts are distinguished automatically as two high peaks. Our proposed approach that use 
Euclidean distance and Change Point Detection algorithm with Caffe to detect video shot 
boundary. The overall detection percent is almost accurate and can be applied for all types 
of video data. 
 
The below data prepared with visually identified cuts manually on the first 500 frames to 
compare with the Euclidean Distance output followed by Change Point Detection graph to 
measure accuracy of our proposed approach.  

 
 

Frame No. Frame Name Cut Euclidean Distance 

1 anni001_1.jpg   2.372311149 

2 anni001_2.jpg   2.472317729 

3 anni001_3.jpg   3.292649839 

4 anni001_4.jpg   3.008475481 

5 anni001_5.jpg   3.091585992 

6 anni001_6.jpg   3.083551949 

7 anni001_7.jpg   3.196543483 

8 anni001_8.jpg   2.990283976 

9 anni001_9.jpg   2.686553106 

10 anni001_10.jpg   2.677382687 

11 anni001_11.jpg   2.546326467 

12 anni001_12.jpg   2.275234168 
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13 anni001_13.jpg   2.645647537 

14 anni001_14.jpg   2.534478245 

15 anni001_15.jpg   2.425457159 

16 anni001_16.jpg   2.427176684 

17 anni001_17.jpg   2.683631753 

18 anni001_18.jpg   2.584035578 

19 anni001_19.jpg   2.328441865 

20 anni001_20.jpg   2.618888173 

21 anni001_21.jpg   1.608908404 

22 anni001_22.jpg Hard cut 4.59233453 

23 anni001_23.jpg   3.277518624 

24 anni001_24.jpg   2.287889863 

25 anni001_25.jpg   1.468299913 

26 anni001_26.jpg   1.346178963 

27 anni001_27.jpg   3.213042358 

28 anni001_28.jpg   1.81430212 

29 anni001_29.jpg   2.3486974 

30 anni001_30.jpg   2.199510776 

31 anni001_31.jpg Gradual 1.766347775 

32 anni001_32.jpg Gradual 2.914009321 

33 anni001_33.jpg Gradual 2.128705341 

34 anni001_34.jpg Gradual 2.915136852 

35 anni001_35.jpg Gradual 2.765753878 

36 anni001_36.jpg Gradual 3.162491566 

37 anni001_37.jpg Gradual 2.079885362 

38 anni001_38.jpg Gradual 2.919569166 

39 anni001_39.jpg Gradual 2.308416366 

40 anni001_40.jpg Gradual 3.019915858 

41 anni001_41.jpg Gradual 2.117173293 

42 anni001_42.jpg Gradual 2.468202951 

43 anni001_43.jpg Gradual 2.676650214 

44 anni001_44.jpg Gradual 2.501996021 

45 anni001_45.jpg Gradual 3.292066244 

46 anni001_46.jpg Gradual 2.723324978 

47 anni001_47.jpg Gradual 2.607081764 

48 anni001_48.jpg Gradual 2.946700328 

49 anni001_49.jpg Gradual 3.478223503 

50 anni001_50.jpg Gradual 2.60265213 

51 anni001_51.jpg Gradual 2.422435248 

52 anni001_52.jpg Gradual 2.722859268 

53 anni001_53.jpg Gradual 3.807084156 

54 anni001_54.jpg Gradual 2.484325919 

55 anni001_55.jpg Gradual 2.554507882 

56 anni001_56.jpg Gradual 2.814518037 

57 anni001_57.jpg Gradual 2.635845012 

58 anni001_58.jpg Gradual 3.160277832 

59 anni001_59.jpg Gradual 2.35751777 
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60 anni001_60.jpg Gradual 3.039805922 

61 anni001_61.jpg   1.875702485 

62 anni001_62.jpg   2.818319634 

63 anni001_63.jpg   1.709959607 

64 anni001_64.jpg   1.961265361 

65 anni001_65.jpg   2.304118512 

66 anni001_66.jpg   2.268603176 

67 anni001_67.jpg   3.011075958 

68 anni001_68.jpg   2.139190293 

69 anni001_69.jpg   2.912950989 

70 anni001_70.jpg   2.424098782 

71 anni001_71.jpg   2.939618561 

72 anni001_72.jpg   2.040064726 

73 anni001_73.jpg   2.164802965 

74 anni001_74.jpg   2.853242306 

75 anni001_75.jpg   2.94785229 

76 anni001_76.jpg   1.574795553 

77 anni001_77.jpg   2.010116893 

78 anni001_78.jpg   3.009430543 

79 anni001_79.jpg   2.238432241 

80 anni001_80.jpg   2.997192861 

81 anni001_81.jpg   1.96341512 

82 anni001_82.jpg   2.737577768 

83 anni001_83.jpg   2.064766462 

84 anni001_84.jpg   2.678618999 

85 anni001_85.jpg   1.710117954 

86 anni001_86.jpg   2.114387792 

87 anni001_87.jpg   2.586694238 

88 anni001_88.jpg   2.887509345 

89 anni001_89.jpg   1.501170273 

90 anni001_90.jpg   1.759680405 

91 anni001_91.jpg   2.545562561 

92 anni001_92.jpg   2.078365156 

93 anni001_93.jpg   2.467979355 

94 anni001_94.jpg   2.049099989 

95 anni001_95.jpg   2.639517466 

96 anni001_96.jpg   2.157615009 

97 anni001_97.jpg   2.271067626 

98 anni001_98.jpg   1.626891914 

99 anni001_99.jpg   2.061541127 

100 anni001_100.jpg   2.637538338 

101 anni001_101.jpg Gradual 2.037270321 

102 anni001_102.jpg Gradual 2.828735749 

103 anni001_103.jpg Gradual 2.262074936 

104 anni001_104.jpg Gradual 2.591043238 

105 anni001_105.jpg Gradual 2.040332379 

106 anni001_106.jpg Gradual 2.390193177 
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107 anni001_107.jpg Gradual 1.677438875 

108 anni001_108.jpg Gradual 1.84501546 

109 anni001_109.jpg Gradual 2.576320622 

110 anni001_110.jpg Gradual 2.92903641 

111 anni001_111.jpg Gradual 2.470384973 

112 anni001_112.jpg Gradual 2.414413622 

113 anni001_113.jpg Gradual 2.847917678 

114 anni001_114.jpg Gradual 2.607051655 

115 anni001_115.jpg Gradual 2.897224676 

116 anni001_116.jpg Gradual 2.918955478 

117 anni001_117.jpg Gradual 2.80967482 

118 anni001_118.jpg Gradual 2.140603217 

119 anni001_119.jpg Gradual 3.051608433 

120 anni001_120.jpg Gradual 2.984702314 

121 anni001_121.jpg Gradual 3.101980611 

122 anni001_122.jpg Gradual 3.152897768 

123 anni001_123.jpg Gradual 3.205286507 

124 anni001_124.jpg Gradual 3.102123972 

125 anni001_125.jpg Gradual 2.731059328 

126 anni001_126.jpg Gradual 3.195172172 

127 anni001_127.jpg Gradual 3.274224193 

128 anni001_128.jpg Gradual 2.759603423 

129 anni001_129.jpg Gradual 2.964772462 

130 anni001_130.jpg Gradual 3.290638678 

131 anni001_131.jpg Gradual 3.142344008 

132 anni001_132.jpg Gradual 2.650602808 

133 anni001_133.jpg Gradual 3.129092004 

134 anni001_134.jpg Gradual 3.046432328 

135 anni001_135.jpg   3.132325632 

136 anni001_136.jpg   2.632660087 

137 anni001_137.jpg   2.831439151 

138 anni001_138.jpg   2.936047985 

139 anni001_139.jpg   2.940735758 

140 anni001_140.jpg   2.864244205 

141 anni001_141.jpg   1.716812703 

142 anni001_142.jpg   2.754905683 

143 anni001_143.jpg   2.879451241 

144 anni001_144.jpg   3.100254558 

145 anni001_145.jpg   2.43382038 

146 anni001_146.jpg   2.85575177 

147 anni001_147.jpg   2.880969742 

148 anni001_148.jpg   2.703234085 

149 anni001_149.jpg   2.767660791 

150 anni001_150.jpg   1.652258482 

151 anni001_151.jpg   2.903561407 

152 anni001_152.jpg   2.890983316 

153 anni001_153.jpg   2.562448527 
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154 anni001_154.jpg   1.675581158 

155 anni001_155.jpg   2.519680089 

156 anni001_156.jpg   2.671782734 

157 anni001_157.jpg   2.879550763 

158 anni001_158.jpg   3.19177633 

159 anni001_159.jpg   2.358425252 

160 anni001_160.jpg   2.537391953 

161 anni001_161.jpg   2.605561721 

162 anni001_162.jpg   2.502102595 

163 anni001_163.jpg   1.999379215 

164 anni001_164.jpg   2.713181991 

165 anni001_165.jpg   2.701987599 

166 anni001_166.jpg   2.677063935 

167 anni001_167.jpg   1.333125398 

168 anni001_168.jpg   2.659251638 

169 anni001_169.jpg Hard cut 4.147412158 

170 anni001_170.jpg   2.340463684 

171 anni001_171.jpg   2.334040049 

172 anni001_172.jpg   2.148572166 

173 anni001_173.jpg   2.189329431 

174 anni001_174.jpg   2.525779676 

175 anni001_175.jpg   2.209203903 

176 anni001_176.jpg   2.286863783 

177 anni001_177.jpg   1.858857809 

178 anni001_178.jpg   2.083425053 

179 anni001_179.jpg   2.590954559 

180 anni001_180.jpg   2.250517734 

181 anni001_181.jpg   1.472130203 

182 anni001_182.jpg   1.663879673 

183 anni001_183.jpg   1.922767911 

184 anni001_184.jpg   2.221062751 

185 anni001_185.jpg   2.151477698 

186 anni001_186.jpg   2.252025301 

187 anni001_187.jpg   2.300662441 

188 anni001_188.jpg   2.066069344 

189 anni001_189.jpg   2.272311232 

190 anni001_190.jpg   1.593685018 

191 anni001_191.jpg   2.154367557 

192 anni001_192.jpg   1.852209914 

193 anni001_193.jpg   2.160617184 

194 anni001_194.jpg   1.548258308 

195 anni001_195.jpg Gradual 2.076659122 

196 anni001_196.jpg Gradual 1.985669505 

197 anni001_197.jpg Gradual 1.928019176 

198 anni001_198.jpg Gradual 2.138688441 

199 anni001_199.jpg Gradual 1.500894935 

200 anni001_200.jpg Gradual 2.458917429 
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201 anni001_201.jpg Gradual 2.195483596 

202 anni001_202.jpg Gradual 2.034488418 

203 anni001_203.jpg Gradual 1.713843435 

204 anni001_204.jpg Gradual 2.29696519 

205 anni001_205.jpg Gradual 2.087086247 

206 anni001_206.jpg Gradual 2.207304464 

207 anni001_207.jpg Gradual 2.529495068 

208 anni001_208.jpg Gradual 2.31011824 

209 anni001_209.jpg Gradual 2.566313904 

210 anni001_210.jpg Gradual 2.330319092 

211 anni001_211.jpg Gradual 2.452178364 

212 anni001_212.jpg Gradual 2.301886957 

213 anni001_213.jpg Gradual 2.61262965 

214 anni001_214.jpg Gradual 2.877291339 

215 anni001_215.jpg Gradual 2.447600416 

216 anni001_216.jpg Gradual 2.68785057 

217 anni001_217.jpg Gradual 2.923446921 

218 anni001_218.jpg Gradual 3.128421377 

219 anni001_219.jpg Gradual 3.215979284 

220 anni001_220.jpg Gradual 2.805527558 

221 anni001_221.jpg Gradual 3.567243138 

222 anni001_222.jpg Gradual 3.033979689 

223 anni001_223.jpg Gradual 2.788983576 

224 anni001_224.jpg Gradual 2.636418607 

225 anni001_225.jpg Gradual 2.92239941 

226 anni001_226.jpg Gradual 2.654488178 

227 anni001_227.jpg Gradual 2.933049668 

228 anni001_228.jpg Gradual 3.026882014 

229 anni001_229.jpg Gradual 3.019275576 

230 anni001_230.jpg Gradual 2.736718337 

231 anni001_231.jpg Gradual 2.860627072 

232 anni001_232.jpg Gradual 2.56626739 

233 anni001_233.jpg Gradual 2.005917123 

234 anni001_234.jpg Gradual 2.659270687 

235 anni001_235.jpg Gradual 3.110597221 

236 anni001_236.jpg   2.944252075 

237 anni001_237.jpg   2.223209163 

238 anni001_238.jpg   3.303311044 

239 anni001_239.jpg Hard cut 4.701153093 

240 anni001_240.jpg   2.584570166 

241 anni001_241.jpg   2.813803063 

242 anni001_242.jpg   2.770093364 

243 anni001_243.jpg   2.915722563 

244 anni001_244.jpg   2.76197826 

245 anni001_245.jpg   2.871506267 

246 anni001_246.jpg   2.649379311 

247 anni001_247.jpg   2.983792542 
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248 anni001_248.jpg   2.63886502 

249 anni001_249.jpg   2.535198604 

250 anni001_250.jpg   2.935642901 

251 anni001_251.jpg   2.701523238 

252 anni001_252.jpg   3.248673289 

253 anni001_253.jpg   3.0025607 

254 anni001_254.jpg   2.587986152 

255 anni001_255.jpg   2.522247542 

256 anni001_256.jpg   2.721716681 

257 anni001_257.jpg   2.97171513 

258 anni001_258.jpg Gradual 3.324338853 

259 anni001_259.jpg Gradual 2.831616718 

260 anni001_260.jpg Gradual 3.148719376 

261 anni001_261.jpg Gradual 3.019624462 

262 anni001_262.jpg Gradual 2.937183512 

263 anni001_263.jpg Gradual 3.011531027 

264 anni001_264.jpg Gradual 3.454267224 

265 anni001_265.jpg Gradual 3.247352974 

266 anni001_266.jpg Gradual 3.086704992 

267 anni001_267.jpg Gradual 3.106781883 

268 anni001_268.jpg Gradual 3.247654688 

269 anni001_269.jpg Gradual 3.411258337 

270 anni001_270.jpg Gradual 3.524932015 

271 anni001_271.jpg Gradual 3.880762245 

272 anni001_272.jpg Gradual 3.141304068 

273 anni001_273.jpg Gradual 3.182835021 

274 anni001_274.jpg Gradual 2.761760597 

275 anni001_275.jpg Gradual 3.046690797 

276 anni001_276.jpg Gradual 2.837515227 

277 anni001_277.jpg Gradual 3.169517264 

278 anni001_278.jpg Gradual 3.107585955 

279 anni001_279.jpg Gradual 2.520286612 

280 anni001_280.jpg Gradual 2.518530961 

281 anni001_281.jpg Gradual 2.772013925 

282 anni001_282.jpg Gradual 2.744363623 

283 anni001_283.jpg Gradual 2.603922433 

284 anni001_284.jpg Gradual 2.92508199 

285 anni001_285.jpg Gradual 3.085840884 

286 anni001_286.jpg   2.656820798 

287 anni001_287.jpg Hard cut 3.980587018 

288 anni001_288.jpg   2.658011324 

289 anni001_289.jpg   2.763673596 

290 anni001_290.jpg   2.633128989 

291 anni001_291.jpg   4.513672839 

292 anni001_292.jpg   4.336782323 

293 anni001_293.jpg   2.120078046 

294 anni001_294.jpg   3.524311777 
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295 anni001_295.jpg   3.305471463 

296 anni001_296.jpg   3.349304773 

297 anni001_297.jpg   3.457564341 

298 anni001_298.jpg   1.906911403 

299 anni001_299.jpg   3.224323135 

300 anni001_300.jpg   3.223893284 

301 anni001_301.jpg   3.521114741 

302 anni001_302.jpg   3.736766198 

303 anni001_303.jpg   2.289843457 

304 anni001_304.jpg   3.450125513 

305 anni001_305.jpg   3.383423063 

306 anni001_306.jpg   3.290757089 

307 anni001_307.jpg   3.339556711 

308 anni001_308.jpg   1.832907185 

309 anni001_309.jpg   3.230362434 

310 anni001_310.jpg   3.345363697 

311 anni001_311.jpg   3.475629748 

312 anni001_312.jpg   3.321058267 

313 anni001_313.jpg   1.56414426 

314 anni001_314.jpg   3.465978968 

315 anni001_315.jpg   3.534825832 

316 anni001_316.jpg   3.445752338 

317 anni001_317.jpg   3.320346553 

318 anni001_318.jpg   1.972777532 

319 anni001_319.jpg Hard cut 4.666694186 

320 anni001_320.jpg   1.750252109 

321 anni001_321.jpg   2.183243127 

322 anni001_322.jpg   2.362855551 

323 anni001_323.jpg   2.313705135 

324 anni001_324.jpg   2.195096966 

325 anni001_325.jpg   1.897261255 

326 anni001_326.jpg   1.732360402 

327 anni001_327.jpg   1.723206658 

328 anni001_328.jpg   1.552562322 

329 anni001_329.jpg   1.220062188 

330 anni001_330.jpg   1.380062188 

331 anni001_331.jpg   2.684653144 

332 anni001_332.jpg   2.986197699 

333 anni001_333.jpg   3.039407139 

334 anni001_334.jpg Hard cut 4.796156191 

335 anni001_335.jpg   2.567391351 

336 anni001_336.jpg   3.119526007 

337 anni001_337.jpg   2.780154007 

338 anni001_338.jpg   2.90756686 

339 anni001_339.jpg   2.829858299 

340 anni001_340.jpg   2.629474746 

341 anni001_341.jpg   2.800379968 
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342 anni001_342.jpg   2.983239113 

343 anni001_343.jpg   2.836368251 

344 anni001_344.jpg   1.887336265 

345 anni001_345.jpg   2.817252387 

346 anni001_346.jpg   2.486828932 

347 anni001_347.jpg   2.469392777 

348 anni001_348.jpg   2.758954434 

349 anni001_349.jpg   2.417125631 

350 anni001_350.jpg   2.615312412 

351 anni001_351.jpg   2.561398891 

352 anni001_352.jpg   2.459860697 

353 anni001_353.jpg   2.596329231 

354 anni001_354.jpg   2.317900357 

355 anni001_355.jpg Hard cut 4.519323829 

356 anni001_356.jpg   3.183719063 

357 anni001_357.jpg   2.033341615 

358 anni001_358.jpg   2.854286158 

359 anni001_359.jpg   3.034498845 

360 anni001_360.jpg   2.939404825 

361 anni001_361.jpg   3.225346566 

362 anni001_362.jpg   1.611197958 

363 anni001_363.jpg   3.295164882 

364 anni001_364.jpg   2.516517881 

365 anni001_365.jpg   2.767790863 

366 anni001_366.jpg   3.018506661 

367 anni001_367.jpg   2.339271914 

368 anni001_368.jpg   3.200407972 

369 anni001_369.jpg   3.267656976 

370 anni001_370.jpg   3.507793075 

371 anni001_371.jpg   3.224150167 

372 anni001_372.jpg   2.585158331 

373 anni001_373.jpg   3.291968448 

374 anni001_374.jpg   3.048063295 

375 anni001_375.jpg   3.099580452 

376 anni001_376.jpg   2.992662311 

377 anni001_377.jpg   1.636960066 

378 anni001_378.jpg   2.830103816 

379 anni001_379.jpg   3.06325817 

380 anni001_380.jpg   3.114730145 

381 anni001_381.jpg   2.813871432 

382 anni001_382.jpg   -1.06448156 

383 anni001_383.jpg   3.326713936 

384 anni001_384.jpg   3.338700505 

385 anni001_385.jpg   3.195491234 

386 anni001_386.jpg   3.017529482 

387 anni001_387.jpg   2.280879888 

388 anni001_388.jpg   3.152706563 
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389 anni001_389.jpg   2.88819778 

390 anni001_390.jpg   3.037484959 

391 anni001_391.jpg   2.989974569 

392 anni001_392.jpg   -0.051703995 

393 anni001_393.jpg   3.259849758 

394 anni001_394.jpg   3.006661979 

395 anni001_395.jpg   2.78997002 

396 anni001_396.jpg   2.93551714 

397 anni001_397.jpg   2.326238468 

398 anni001_398.jpg   2.680012833 

399 anni001_399.jpg   3.114899459 

400 anni001_400.jpg   2.903527763 

401 anni001_401.jpg   3.018198248 

402 anni001_402.jpg   2.283037948 

403 anni001_403.jpg   2.93237011 

404 anni001_404.jpg   2.91451357 

405 anni001_405.jpg   2.786041225 

406 anni001_406.jpg   2.803447652 

407 anni001_407.jpg   0.422783449 

408 anni001_408.jpg   2.936764618 

409 anni001_409.jpg   2.80100797 

410 anni001_410.jpg   3.018263604 

411 anni001_411.jpg   2.977481416 

412 anni001_412.jpg   0.956293486 

413 anni001_413.jpg   2.808101793 

414 anni001_414.jpg   2.734336933 

415 anni001_415.jpg   2.741472301 

416 anni001_416.jpg   2.907122723 

417 anni001_417.jpg   2.42661871 

418 anni001_418.jpg   2.982313914 

419 anni001_419.jpg   3.029977244 

420 anni001_420.jpg   3.005568367 

421 anni001_421.jpg   2.592378448 

422 anni001_422.jpg   1.418205088 

423 anni001_423.jpg   3.125272339 

424 anni001_424.jpg   2.652093463 

425 anni001_425.jpg   3.264052872 

426 anni001_426.jpg   3.019995211 

427 anni001_427.jpg   1.306703361 

428 anni001_428.jpg   3.011402735 

429 anni001_429.jpg   3.088428324 

430 anni001_430.jpg   2.923539224 

431 anni001_431.jpg   2.900605647 

432 anni001_432.jpg   2.174440089 

433 anni001_433.jpg   2.96711783 

434 anni001_434.jpg   3.154700349 

435 anni001_435.jpg   2.900972499 
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436 anni001_436.jpg   2.846293657 

437 anni001_437.jpg   0.818224579 

438 anni001_438.jpg   2.879949203 

439 anni001_439.jpg Hard cut 4.102789221 

440 anni001_440.jpg   2.806057254 

441 anni001_441.jpg   2.918788565 

442 anni001_442.jpg   3.075637325 

443 anni001_443.jpg   1.483798794 

444 anni001_444.jpg   2.989685335 

445 anni001_445.jpg   2.707994591 

446 anni001_446.jpg   3.13364272 

447 anni001_447.jpg   3.230616009 

448 anni001_448.jpg   1.518499123 

449 anni001_449.jpg   2.997395882 

450 anni001_450.jpg   3.122717398 

451 anni001_451.jpg   2.51382282 

452 anni001_452.jpg   2.553068398 

453 anni001_453.jpg   1.68036669 

454 anni001_454.jpg   2.60579831 

455 anni001_455.jpg   2.692388249 

456 anni001_456.jpg   2.790047996 

457 anni001_457.jpg   2.793579728 

458 anni001_458.jpg   0.424253366 

459 anni001_459.jpg   2.902753629 

460 anni001_460.jpg   2.854491894 

461 anni001_461.jpg   2.793538446 

462 anni001_462.jpg   3.041261582 

463 anni001_463.jpg   1.112083229 

464 anni001_464.jpg   2.846045007 

465 anni001_465.jpg   3.177928771 

466 anni001_466.jpg   2.927281436 

467 anni001_467.jpg   3.12391314 

468 anni001_468.jpg   1.749959156 

469 anni001_469.jpg   2.808125737 

470 anni001_470.jpg   2.533982914 

471 anni001_471.jpg   2.942232885 

472 anni001_472.jpg   2.558958191 

473 anni001_473.jpg   0.24003615 

474 anni001_474.jpg   2.781610921 

475 anni001_475.jpg   3.035608993 

476 anni001_476.jpg   2.829487565 

477 anni001_477.jpg   2.845182934 

478 anni001_478.jpg   -0.37820916 

479 anni001_479.jpg   3.334509614 

480 anni001_480.jpg   2.850943233 

481 anni001_481.jpg   2.488451781 

482 anni001_482.jpg   2.772169674 
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483 anni001_483.jpg   2.163649427 

484 anni001_484.jpg   2.729053808 

485 anni001_485.jpg   2.599587211 

486 anni001_486.jpg   3.047769154 

487 anni001_487.jpg   3.250167239 

488 anni001_488.jpg   0.45777339 

489 anni001_489.jpg   2.743200732 

490 anni001_490.jpg   2.891894077 

491 anni001_491.jpg   2.344353025 

492 anni001_492.jpg   2.613043542 

493 anni001_493.jpg   0.123665649 

494 anni001_494.jpg   2.583484435 

495 anni001_495.jpg   2.724907864 

496 anni001_496.jpg   2.80515425 

497 anni001_497.jpg   2.78452747 

498 anni001_498.jpg   2.281789633 

499 anni001_499.jpg   2.67457847 
 

 

Table-3: Frames data prepared manually 

 
The graph generated on Euclidean Distances data from the above table mentioned in 
Appendix 1 in comparison with another graph generated by Change Point Detection 
algorithm on the above Euclidean Distances as input. This is to measure and show the 
efficiency and accuracy of our proposed approach. 
 

 

 
 

Figure 40-A : Hard Cut detect 

 

 
 

  Figure 40-B:  Gradual Cut detect 

 
Figure 40: Shot boundary detected in video frames 

 

 

 
Here in this section, we summarize the testing results of our proposed method using 

different video image sequences. Also, the performance of the proposed system is 

measured using the following different TRECVID evaluation metrics those are defined as 
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Recall (R) =
Correct

Correct + Miss
x 100 

 

Precision (P) =
Correct

Correct + False
x 100 

 

F − Measure (F) =
2 x Precsion x Recall

Precision + Recall
x 100 

 

Video 
Number 

of Shots 

Number 

of Frames 

Yoo’s System (H.W. 

Yoo, H. J. Ryoo, 

and D. S. Jang, 

2006) 

Wenjing Tong’s 

System(Li Song, 

Xiaokang Yang, Hui 

Qu, Rong Xie, 2015) 

Proposed Method 

P R F P R F P R F 

anni001 10 870 0.67 0.67 0.65 1 0.881 0,94 0.99 0.94 0.96 

anni005 38 11362 0.84 0.88 0.86 1 0.895 0.932 0.99 0.93 0.96 

anni009 38 12305 0.86 0.94 0.90 1 0.821 0.901 0.98 0.94 0.96 

 

Table-4: Comparison with other methods 
 

We downloaded the above used benchmark databases from NIST (http://trecvid.nist.gov/) as 

it has a commonly used huge evaluation database.  

 

10. Conclusions 

 
This work introduces an efficient and robust system for detecting video scene changes, an 
essential task in fully content analysis systems. We faced many difficulties when during the 
installation process. It took almost 1 month to install the necessary libraries. Our module 
receives frame differences as inputs, then recalls the information stored into the neural 
network weights to determine the outputs. The algorithm has been tested on varieties of 
videos.  Better generalization of the neural network can be achieved by increasing the 
number of video clips used in the training phase and by varying their contents. The 
effectiveness of the proposed paradigm has been proven as a robust and efficient way to 
identify scene changes in any type of compressed video streams.   
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APPENDIX-1 
 

The below graph is generated on the Euclidean Distance algorithm applied between two frames. This distance measured 

on extracted feature points of frame of the video considered. 

 

 

 

       

Figure 41: Hard cut and Gradual cut detection 
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The below graph is generated by the Change Point Detection(CPD) algorithm where earlier calculated Euclidean Distance 

values between two frames were passed as input.  

 

 

 

Figure 42: Hard cut and Gradual cut detection by CPD algorithm 

 


