

Rental Inventory Management System
Major Project Report

Submitted for Assessment for 6th semester.

PRESENTED BY

AVILASH BANERJEE

Registration number: 151170510009 of 2015-16

Roll Number: 11701015009

MEGHNAD SAMADDAR

Registration number: 151170510028 of 2015-16

Roll Number: 11701015028

RITARAJ PAL

Registration number: 151170510035 of 2015-16

Roll Number: 11701015035

Under the supervision of

Manas Ghosh

Asst. Professor at RCC Institute of Information Technology

At RCC Institute of Information Technology affiliated to Maulana Abul Kalam Azad University of
Technology, Canal South Road, Beliaghata, Kolkata-700015

May 2018

Software Design Document Rental Inventory Management System

1

RENTAL

INVENTORY

MANAGEMENT

SYSTEM

SOFTWARE DESIGN DOCUMENT

By

Avilash Banerjee

Meghnad Samaddar

Ritaraj Pal

Software Design Document Rental Inventory Management System

2

RCC INSTITUTE OF INFORMATION TECHNOLOGY

KOLKATA-700015, INDIA

CERTIFICATE

This is to certify that the project titled Rental Inventory Management System

submitted by Avilash Banerjee (Roll number 11701015009 of MCA Department),

Meghnad Samaddar (Roll number 11701015028 of MCA Department), Ritaraj Pal

(Roll number 11701015035 of MCA Department) has been prepared under

my/our supervision for the major project assessment, 6th semester.

[Name of the Guide]

 __ ___________________

 Manas Ghosh

Asst. Professor, Dept. of CA, RCCIIT, Kolkata

Countersigned by,

[Name of the Head of Department]

 _

Arup Kumar Bhattacharjee

Dept. of CA, RCCIIT, Kolkata

Software Design Document Rental Inventory Management System

3

Declaration by Author(s)

This is to declare that this report has been written by me/us. No part of the report

is plagiarized from other sources. All information included from other sources

have been duly acknowledged. I/We aver that if any part of the report is found to

be plagiarized, I/we are shall take full responsibility for it.

 TEAM MEMBERS

 Avilash Banerjee

 Ritaraj Pal

 Meghnad Samaddar

Software Design Document Rental Inventory Management System

4

ACKNOWLEDGEMENT

We express our sincere gratitude to Professor Manas Ghosh (Asst.

Professor of Department of CA, RCCIIT) for extending his valuable time to guide us

to take up this internship (and the associated project) and see it through.

 Signature of the student,

Avilash Banerjee

__________ _____________

Meghnad Samaddar

__________ _____________

Ritaraj Pal

__________ _____________

Software Design Document Rental Inventory Management System

5

RCC INSTITUTE OF INFORMATION TECHNOLOGY

KOLKATA-700015, INDIA

CERTIFICATE OF ACCEPTANCE

This is to certify that the project titled Rental Inventory Management System

submitted by Avilash Banerjee (Roll number 11701015009 of MCA Department),

Meghnad Samaddar (Roll number 11701015028 of MCA Department), Ritaraj Pal

(Roll number 11701015035 of MCA Department) is hereby recommended to be

accepted for assessment for 6th Semester Examination in MAKAUT.

Name of the Examiner(s): Signature with Data

Date: _____________

Software Design Document Rental Inventory Management System

6

Table of contents
1. Abstract 7

2. Introduction 8

2.1. Purpose 8

2.2. Scope 8

2.3. Definitions, Acronyms and Abbreviations 8

2.3.1. Design Methodologies 8

2.3.2. Software Technologies 9

2.3.3. Other entities 10

3. Feasibility Study 11

4. Design Overview 13

4.1. Description of Problem 13

4.2. Technologies Used 14

4.3. Constraints of Use 14

4.4. System Architecture 15

4.4.1. Database Architecture 16

4.4.2. Server Architecture 23

4.5. System Operations 31

5. Requirements Traceability 36

6. User Interface 39

7. Data Model and Storage 48

7.1. UML diagrams 48

7.1.1. Use Case Diagram 48

7.1.2. Activity Diagram 49

7.2. Functional Diagrams and Algorithms 50

7.2.1. React Component tree 50

7.2.2. Data Flow Diagram 51

7.2.3. E-R Diagram 55

7.2.4. Flowcharts and Algorithms 56

8. Advantages and Disadvantages of Proposed System. 68

9. Future Scope 70

10. Conclusion 71

11. Bibliography 72

Software Design Document Rental Inventory Management System

7

1: Abstract

This project report sufficiently describes the proposed ‘Rental Inventory Management System’ to

determine its feasibility, usability and modular functionality. The client company ‘Computer

Exchange’ experienced difficulties with their existing system wherein they used a windows

application to keep track of their rental inventory, excel sheets to prepare reports and manual

preparation of rental challans for their customers. This proposed system seeks to combine all

these into a dynamic framework where the users would be able to create a repository of their

customers, keep track, manage and edit their inventory products, create challans and invoices and

prepare day to day reports for intra-office purposes; all within the same system. It uses a client-

server model with a connected database to keep track of the various inventories and customers

amongst the various branches of the office. The front end is modeled as a website so as to ensure

user-friendly interfacing, even for their non technical personnel. The system has been made as a

single version (Version 1) with space for future expansions of the system to include more high-

end functionality like notification managers and payment portals. The feasibility studies, design,

UML diagrams, advantages and disadvantages have been properly described in this document.

Software Design Document Rental Inventory Management System

8

2: Introduction

2.1: Purpose

The purpose of this document is to describe the design and implementation of the Rental

Inventory Management System website for the computer rental company ‘Computer Exchange’

as specified in the Software Requirement Specification document provided. The ‘Inventory

Management System’ is designed to manage the day to day business activities of the said

organization.

2.2: Scope

This document describes the implementation details of the Rental Inventory Management

System, which includes the feasibility study, summary of functional and non-functional

requirements as specified in the SRS, details of design and algorithms used in the development

process and the application areas and use cases of the software.

This document however, will not include any source code, test cases or detail of testing

procedures. For the details of using the software and utilizing its features, the reader is requested

to consult the User Manual.

2.3: Definitions, Acronyms and Abbreviations

2.3.1: Design Methodologies

SRS Software Requirement Specifications. SRS stands for Software Requirement

Specifications. It is responsible for defining in an unambiguous and concise way the functional

and non-functional requirements of the software under development. It fully explains what the

software is expected to do and serves as a binding contract between the developer and the client.

SDD software design document or (SDD) is a document responsible for providing the blueprint

and the structure of the software to be developed in detail. It is used to explain the design details

of the project to the software development team.

ACID It is an acronym for Atomicity, Consistency, Isolation and Durability. These are the

desired properties for a database management system transaction. Atomicity dictates that the

transactions should be performed completely or not at all. Consistency requires the system to

stay in a stable and consistent state before or after a transaction. Isolation suggests that each

Software Design Document Rental Inventory Management System

9

transaction must not affect or be affected by any other transaction. Durability ensures that the

database should be recoverable, even after a failure condition occurs.

API Stands for Application Program Interface. It is a set of tools and methods that are utilised

by the developers to develop the system.It works as an interface between different components

of the software.

2.3.2: Software Technologies

React.js React.js or ReactJS is a javascript library which is used to dynamically develop

frontend applications for web pages. It is used in the development of web based applications or

mobile applications.

Node.js It is a javascript based platform that is used to create complex network

applications. Node.js is an asynchronous, efficient library to run code server-side before sending

them to the web application for rendering. Node.js has been used in the this project for writing

APIs that accesses/modifies the database.

MySQL It is an efficient, easy to use database management system which uses SQL.

Heroku It is a popular cloud-based web hosting service which is used to deploy our server

for data transfer.

Amazon Web Services (AWS) It is a state of the earth web hosting service that is perfect

for commercial use and is not expensive for hosting web applications.

Bitbucket It is basically the git used by teams which provides functions and features for

collaborative development efforts and version management.

2.3.3: Other entities

Computer Exchange Computer Exchange is a Kolkata based company that started in 1986 and

are involved in the rent and hire business. It is one of the most popular locations for the rental

and purchasing of IT equipment. They maintain goodwill amongst their old customers which in

turn have increased their business several folds. The rental division fulfills the need of multiple

IT companies across India.

Software Design Document Rental Inventory Management System

10

Rental Inventory Management System Despite having a generic name, Rental Inventory

management system is the name of the web application this document is detailing. The said web

application is made by Dirac Business Solutions for the client ‘Computer Exchange’.

User The users of the web application, that is, the ‘Computer Exchange’ office staffs. The

employees will be able to maintain a record of their products in the inventory, create and manage

rental records, prepare challans, review records and create new repositories whenever required.

3: Feasibility Study

The following is a brief summary of the Feasibility Study Report for the Rental Inventory

Management System for documentation purposes.

Technical Feasibility

Upon analysing the technical feasibility of this project, we concluded that we require the state of

the art softwares and tools that are available today. We decided upon using React js framework

as front end to provide fast and seamless user interface and navigation. Node js as back end

server to process all the API calls and interactions with the database, with fast and asynchronous

service. MySql was decided to be used as database as it is well known and easy to work with. All

these tools were chosen to enable fast prototyping and deployment.

In the initial development process, Heroku was chosen as a platform for hosting the web

application, which will be changed to Amazon Web Services before deployment. And Bitbucket

was used for version control and management.

Therefore it was concluded that the project was technically feasible.

Economical Feasibility

The development cost of this application was decided to be kept as low as possible. Therefore

almost all the softwares and tools that are used were completely free. Linux Mint OS as

operating system, React js, Node js, MySql, Heroku services and Bitbucket was utilized as a

result. It was decided to use Amazon Web Services upon deployment which is a paid service.

Software Design Document Rental Inventory Management System

11

Therefore it was concluded that the project was economically feasible.

Legal Feasibility

Upon analysis it was concluded that there was no current legislation or prior commitments of the

organization that will affect the project. Therefore It was legally feasible to pursue the

project.

Operational Feasibility

This project is specifically designed for the use of the ‘Computer Exchange’ office staff and

other intra-office purposes. The employees will be able to maintain a record of their products in

the inventory,create and manage rental records,prepare challans,review records and create new

repositories whenever required. The product has been made as an user-friendly software so that

even the non technical staff can use it without much difficulty.

The current system in place is a platform dependent application software that relies heavily on

manual labour and management utilizing physical documents as a means of communicating with

different subsystems. The new software will therefore be a much needed improvement and

therefore it is operationally feasible.

Schedule Feasibility

Upon analyzing the functional and non-functional requirements and the number of available

human resource it was concluded that by using Agile development methodology we can deliver

the version one of the product within 3 months. The team included one Project Manager, one

Database Administrator, one lead developer and three interns. Later due to employee turnover

the development team was reduced to one Project Manager and two interns which caused

revision of the schedule and delay on deployment of version one.

Software Design Document Rental Inventory Management System

12

4: Design Overview

4.1: Description of Problem

The purpose of this system is to create a repository of assets and clients of Computer Exchange

and make the job of managing inventory and customers easier. The Inventory Management

System that is used currently by Computer Exchange is an outdated desktop based legacy

software that requires a lot of manual labour and paper trail for inventory management and

record keeping. The reports that are required by the upper management are generated manually

by the help of excel sheets, which are printed out and kept as physical record. This process is

tedious and requires a lot of time and effort to generate sub optimal reports that are not easy to

read.

The Rental Inventory Management software that we are developing aims to overhaul the whole

system and utilize the internet and the portability of web based application to create an unified

system that can be used by all the employees of Computer Exchange. The system aims to

eliminate the manual labour and record keeping as much as possible, and furthermore it can be

run on any device that can run a JavaScript supported browser, which can be a computers,

phones, tablets. The interface should be easy to use and navigate, while providing useful

informations and reports in a compact manner.

One of the most important feature required by the client was the ability to assemble or

disassemble assets that are rented. Suppose Desktop is an asset, then the client wanted the feature

that enables them to remove its parts like RAM or Motherboard and

Replace them by new ones as per request of the buyers or renters. Therefore the removed

component will be added to inventory as new asset and the part that it gets replaced with is taken

from the existing inventory and added to the Desktop. These changes will be reflected in the

challan and as well as on the record.

Another challenge in the development of this system was to create a generalized way of

introducing new assets. Computer Exchange deals with renting and acquisition of various kinds

of assets, that is hardwares and softwares. Therefore it was necessary to create an interface where

new types of assets can be defined by the employees by using the system itself, so that the

system can adapt to new types of assets as new technologies are developed or new types of assets

are acquired.

4.2: Technologies Used

The following are the tools and technologies used to develop this project:

Software Design Document Rental Inventory Management System

13

Technical Field Technologies Used

Front End React Js, HTML, CSS, JSX

Back End Node Js

Database MySQL

IDE Visual Studio Code

Browser Google Chrome, Mozilla Firefox, Mozilla Firefox Quantum

Version

Management

Bitbucket, Google Drive

Web Hosting Heroku: Cloud Application Platform

Collaboration

Tools

TeamViewer 13, Discord

Documentation Google Docs, Creately

OS Linux Mint version 18.2 +

4.3: Constraints of Use

The following explains the constraints of the system under development some of which are

obvious design decisions, others are regarding the tools we used during development or because

of lack of resources.

● Because the software is a web based application, it requires an web browser capable of

running JavaScript.

● The application requires internet connection in order to work properly.

● The application, for now uses free web hosting which has its limitations.

● Assembling components together does not remove the sub-components from the

database, which is a deliberate choice to preserve integrity and avoid confusion.

● The version one of the system will be used locally and therefore it does not contain a

login module, different users and their privileges are not clearly stated in the

specification.

Software Design Document Rental Inventory Management System

14

4.4: System Architecture

The following section describes the architecture of the system backend, which comprises of the

MySQL database that acts as the data repository and the node server which accepts requests from

clients and sends those requests to the database, then receives response from the database and

send the response back to the client. The clients are instances of the web application, running on

client side. Note that the database and the node server are hosted on separate servers, hereafter

we will refer to the node server as ‘Server’ and database server as ‘Database’.

Figure: Interaction between the Clients, the Server and the Database

4.4.1: Database Architecture

The database houses all the necessary data of the Rental Inventory Management System. In brief

these includes, customer information, inventory asset information, order and asset configuration

information among others. Because the database plays such a crucial and central role in the

system architecture we decided to utilize MySQL DBMS, which provides all the necessary

security, ease of access and fast response all the while satisfying the ACID properties that are

necessary for a safe, secure and recoverable system. Furthermore the database is hosted in a

seperate server which is not related to the node server.

Client Client Client

Server

API API API

 Database

Software Design Document Rental Inventory Management System

15

The following tables show the descriptions of each entities in the database:

Entity name: Asset

Asset table stores the individual assets in the database, along with all their static data, like make,

purchase date, part code etc. The dynamic attributes, i.e, the attributes that are dependent on the

type of the asset (asset-type) are stored in the asset_details table.

Attribute Data Type Constraints

id int(11) primary key, auto_increment

asset_type_id int(11) not null, foreign key references Asset_Type.id

serial_no varchar(100) unique

purchase_date timestamp

purchase_price decimal(10,2)

supplier int(11)

warehouse_location int(11)

procurement_date timestamp

status varchar(50)

create_timestamp timestamp

update_timestamp timestamp

part_code varchar(50)

make varchar(100)

warranty_end_date timestamp

transfer_order_no varchar(50)

comments varchar(100)

supplier_invoice varchar(100)

supplier_date timestamp

Software Design Document Rental Inventory Management System

16

branch varchar(45) not null

transfer_order_date timestamp

Entity name: Asset_Config

Asset_Config table is designed to contain all the historical record of asset configuration. This is

associated with the asset modification aspect of the software, i.e., the asset addition or removal

of asset. For example we can remove a RAM asset from a Desktop asset and put another RAM

asset in that desktop. The child_asset_id specifies where this asset is initially detached from and

the parent_asset_id holds the asset_id of the asset it is currently attached to.

Attribute Data Type Constraints

id int(11) primary_key, auto_increment

asset_id int(11) not_null

child_asset_id int(11) foreign_key

create_timestamp timestamp not_null

update_timestamp timestamp not_null

parent_asset_id int(11) foreign_key

status int(11) not_null

Entity name: Asset_Details

Asset_Details contains all the dynamic attribute values of all the assets. We get the attribute_id

from the Asset_Types_Attributes table (that contains the record of all dynamic attribute names)

and asset_id from Asset table (which contains all of the assets and their static attributes) and

using these two foreign keys we can uniquely identify the attribute value of a particular asset.

This mechanism allows the user to dynamically define any asset type and start storing data

values of that asset.

Attribute Data Type Constraints

id int(11) primary_key, auto_increment

asset_id int(11) foreign_key references Asset

Software Design Document Rental Inventory Management System

17

attribute_id int(11) foreign_key references

Asset_Types_Attributes

attribute_value varchar(500)

create_timestamp timestamp not_null

update_timestamp timestamp not_null

Entity name: Asset_Types

Asset_types table contains the names of all the asset types that exists in the database. All the

assets in the Asset table must belong to one asset type. These asset types are defined by the user.

The names of the dynamic attributes that belong to an asset type are recorded in the

Asset_Types_Attributes table.

Attribute Data Type Constraints

id int(11) Primary_key, auto_increment

type_name varchar(100) not_null

is_active tinyint(4)

create_timestamp timestamp

update_timestamp timestamp

Entity name: Asset_Type_Attributes

Asset_Type_Attributes contain all the (dynamic) attribute names belonging to the Asset_Types.

Notice that this table contains the attribute names, not the attribute values for an asset, that

resides in the Asset_Details table.

Attribute Data Type Constraints

id int(11) primary_key auto_increment

asset_type_id int(11) not_null , foreign key references Asset_Type

attr_name varchar(100)

Software Design Document Rental Inventory Management System

18

is_modifiable tinyint(4)

is_mandatory tinyint(4)

is_active tinyint(4)

create_timestamp timestamp not_null

update_timestamp timestamp not_null

Entity name: Challan_Draft

This table is used to keep challans as drafts, which are saved by the user, and not submitted. The

records in this table specify the type of the challan (e.g. rental), challan_description, that acts as

the label of that draft and finally the challan data is stored in challan_details in JSON format,

which can later be retrieved by the application to restore the draft, then the user can resume the

fill up process.

Attribute Data Type Constraints

id int(11) primary_key, auto_increment

challan_type varchar(55)

challan_description varchar(100)

challan_details longtext

create_timestamp timestamp not_null

update_timestamp timestamp not_null

Entity name: Customer

Customer table holds the current name and previous names of the customer along with their PAN

number. For the location and contact details of the customer refer to the

Customer_Location_Master table. Each tuple in here represents one customer. Customer in this

case can range from a large company to an individual.

Attribute Data Type Constraints

Customer_Id int(11) Primary_key, auto_increment

Software Design Document Rental Inventory Management System

19

CName varchar(100) not_null

updated_date timestamp not_null

created_date timestamp not_null

Previously_Known_As varchar(100)

Pan_No varchar(45) not_null

Comments varchar(200)

Entity name: Customer_Location_Master

Customer_Location_Master table holds the contact details, location addresses, etc of all the

customers. Each tuple in this entity set represents an address, where each address belongs to only

one customer. Four contact details (contact name, number, email) can be associated with each

address, where providing one set of the contact detail is mandatory. One address each belonging

to a unique customer must be declared main (isMain: true) to signify that is the main address of

the customer.

Attribute Data Type Constraints

CID int(11) Primary_key, auto_increment

Customer_Id int(11) Not_null, foreign key references Customer

Address varchar(200) not_null

GST_Value varchar(45)

Contact_Person_1 varchar(45) not_null

Contact_Number_1 varchar(20) not_null

Email_1 varchar(45) not_null

Contact_Person_1_Valid tinyint(4)

Contact_Person_2 varchar(45)

Contact_Number_2 varchar(20)

Email_2 varchar(45)

Contact_Person_2_Valid tinyint(4)

Software Design Document Rental Inventory Management System

20

Contact_Person_3 varchar(45)

Contact_Number_3 varchar(20)

Email_3 varchar(45)

Contact_Person_3_Valid tinyint(4)

Contact_Person_4 varchar(45)

Contact_Number_4 varchar(20)

Email_4 varchar(45)

Contact_Person_4_Valid tinyint(4)

Is_Main tinyint(4) not_null

Is_Valid tinyint(4) not_null

created_date timestamp not_null

updated_date timestamp not_null

SEZ tinyint(4) not_null

City varchar(45)

State varchar(45)

Pincode varchar(45)

Entity name: Order_Master

Order_Master table stores the details of each order. This includes the customer id (that bought /

rented it), total amount of money charged, order data etc. Each tuple in this relation is an order,

which may include multiple assets, details of which are stored in Order_Details.

Attribute Data Type Constraints

ID int(11) Primary_key, auto_increment

customer_id int(11) not_null , foreign key references Customer

total_amount double

Software Design Document Rental Inventory Management System

21

challan_number int(10) not_null

order_date timestamp

customer_location_id int(11) not_null

parent_challan_id int(11)

eway_number varchar(45)

po varchar(45)

po_reference varchar(45)

cn_number varchar(45)

delivery_person_name varchar(50)

comment longtext

Entity name: Order_Detail

Order_Detail table holds the details of each order, i.e, what assets belong in that order, what was

the daily unit price of each asset, what was the rental period of each order, etc.

Attribute Data Type Constraints

oid int(11) Primary_key, auto_increment

order_id int(11) not_null

asset_id int(11) Not_null, foreign key references Asset

rental_begin_date timestamp

rental_end_date timestamp

daily_unit_price double

current_procurement_price double

total_unit_price double

gst_value double

total_value double

Software Design Document Rental Inventory Management System

22

status tinyint(4) not_null

4.4.2: Server Architecture

The server is the entity that provides connections between the client application and the DBMS.

The Server is a node js application consisting of multiple APIs which enables the interactions

among the application and the database. Multiple instances of client applications interact with

one server. The server is hosted online on Heroku server.

The following is a brief list of the commonly used APIs that are defined in the server and

invoked when the client request the server to do so.

Name /get_asset

Method GET

Input -

Output List of all asset type names (JSON)

Description Get all asset type names

Name /get_asset_type

Method GET

Input Type_name :String

Output List of all attribute names of that asset type (JSON)

Description Fetch attributes by asset type names

Name /insert_asset_value

Method POST

Input Asset_type_name : String

Static_data : JSON

Software Design Document Rental Inventory Management System

23

Dynamic_data : JSON

Output isSuccess (JSON)

Description Create new asset instance, save the static and dynamic as attributes of the

asset.

Name /insert_asset_type

Method POST

Input assetTypeName : String

assetTypeAttributes : JSON

Output Success (JSON)

Description Create new asset type.

Name /insert_customer

Method POST

Input Customer_name : String

pan_number : String

comments : String

Output Success (JSON)

Description Insert a new customer into database.

Name /get_asset_status_count

Method GET

Input

Output List of out_of_stock, in_stock and damaged assets (JSON)

Description Get count of all the assets that are in and out of stock

Name /get_customer

Software Design Document Rental Inventory Management System

24

Method GET

Input Customer_id : String

Output isSuccess, customerDetails and locationDetails (JSON)

Description Get all the customers details.

Name /get_asset_type_customer_name

Method GET

Input Asset_type_id : String

Output List of customer name (that has the asset) and asset details : JSON

Description Get the details of all the assets of this asset type along with their

customer (when rented)

Name /in_damaged_stock

Method GET

Input Status : String

Id : String

Output Array of asset details : JSON

Description Get the details of all the assets of this asset type with status instock(1) or

damaged(2)

Name /get_all_values

Method GET

Input Type_name : String

Output Static and dynamic attribute values : JSON

Description Get the static and dynamic attributes of all the assets having the specified

asset type name

Name /change_inventory_status

Software Design Document Rental Inventory Management System

25

Method GET

Input Array of asset_id : JSON

Output Success : JSON

Description After renting changes inventory status to unavailable

Name /change_config_table_on_add

Method POST

Input List of cart items : JSON

Output Success : JSON

Description When configuring assets by adding them, saves the parent child data on

config table.

Name /order_create

Method POST

Input List of order details : JSON

Output Success : JSON

Description Create an entry into order table according to the data.

Name /get_all_modifiable_values

Method GET

Input Type_name : String

Output Attribute values of assets (static & dynamic) : JSON

Description Fetches only those assets which are modifiable

Name /remove_asset_value

Method GET

Input Asset_id : String

Software Design Document Rental Inventory Management System

26

attribute_id : String

Attribute_value : JSON

Output Success : JSON

Description Removes attributes from an asset. For example, removing 4GB RAM

from an asset of Desktop type

Name /change_config_table_on_delete

Method POST

Input Serial_no : String

id : String

Output Success : JSON

Description When attribute is removed from asset, this api reflects the changes in

config table.

Name /return_from_repair

Method GET

Input assetId : String

Output Success : JSON

Description When assets come back from repair, set the status of the specified asset

from ‘damaged’ to ‘normal’

Name /change_status_on_return

Method GET

Input assetUpdates : JSON

orderUpdates : JSON

Output Sucess : JSON

Description When assets are returned to the inventory, change the database to reflect

that they are now available.

Software Design Document Rental Inventory Management System

27

Name /modify_customer

Method POST

Input customerId : String

customer_name : String

comments : String

Output Success : JSON

Description Fetches all damaged assets from database

Name /get_asset_config

Method GET

Input -

Output Asset_config_id : JSON

Asset_config_child : JSON

Description Get asset configuration details of all the assets

Name /get_customer_order_details

Method GET

Input Customer_id : String

Output Success : JSON

Description This API is used to retrieve the customer’s order details from the

order_detail table by searching using customer_id.

Name /change_config_status

Method GET

Input Id : String

Output Success : JSON

Description This API is used to change the config status of an assembled asset after it

Software Design Document Rental Inventory Management System

28

has been removed from the concerned asset.

Name /send_for_repair

Method GET

Input Id : String

Output Success : JSON

Description This API is used to mark assets as ‘sent for repair’, therefore they will

not appear as candidates for rental process.

Name /modify_asset_type

Method POST

Input Type_name : String

Attributes : JSON

Output Success : JSON

Description API to insert more attributes into existing asset-type

Name /insert_challan_draft

Method POST

Input challanType : String

challanDescription : String

challanDetails : JSON

Output Success : JSON

Description Saves the challan state to database in JSON format, where it is stored as

drafts, it can be recovered later and resumed.

Name /get_challan_drafts

Method GET

Input -

Software Design Document Rental Inventory Management System

29

Output Success : JSON

Description Get the list of all of the challans that are saved as drafts, this does not

include the challan details.

Name /get_challan_details

Method GET

Input challanId : String

Output Challan detail : JSON

Description API that accepts a challandId and retrieves the challan details of that

draft.

4.5: System Operations

In this section of the project documentation, a walkthrough of all system operations is provided.

The system has been designed as a website with multiple pages and components. The various

descriptions of the pages and their operations are given below.

JSX Type Name Functionality/Operation

AddAddress.jsx Page This page is utilised to add a new address

for the customer. As specified by the

customer’s requirements, no address will be

overwritten or modified. Hence if an

address becomes invalid, it will be marked

so and in its place a new address will be

added if required.

AddAsset.jsx Page Add to

Inventory

This page is utilised to add a new asset to

the inventory. We start by selecting an asset

type and then enter relevant asset

information. Facility is provided to enter

multiple serial numbers for different assets

with same specifications. Facilities are also

provided for scanning serial numbers for

Software Design Document Rental Inventory Management System

30

assets instead of manually entering them.

Validation is provided with appropriate

error messages to inform the user what has

gone wrong while entering asset details.

AddAssetType.jsx Page This page is utilised to dynamically create

different categories of assets to properly

group assets in the inventory.

AssetAddition.jsx Page This page is utilised to modify an existing

asset which is with the customer with

another asset which can be both in-stock or

with the customer. So if the customer has a

Desktop which contains a damaged RAM,

another RAM can be sent to the customer

for modification or the customer can simply

use a RAM which has already been rented

to him to modify his asset.

ChallanDraft.jsx Page Saved

Challan

Drafts

This page is utilised to show existing

challan drafts which has not been submitted

yet and can still be modified before final

submission. This provides further flexibility

of service as in many cases the delivery

person name or the PO reference etc are not

known till later. From this page we can

choose an existing challan and update it and

submit it when all work is done.

Dashboard.jsx Page Dashboard This is the ‘homepage’ of the website and is

used by the office staff to show reports,

daily activities and various other tabular

information. It contains all the information

about assets, orders, customers,

configuration history and inventory data.

DisplayAssets.jsx Page Order Asset This page is the first page in the entire order

process. It is utilised to show a list of assets

chosen by their category. We can filter then

using the multitude of filter provided for the

user’s benefit. Multiple assets are chosen

and then added to cart for further assembly

processes. The page/component following

the DisplayAssets is Checkout.

EditAssetType.jsx Page Edit Asset

Types

This page is used to modify an existing

category of asset to add further

Software Design Document Rental Inventory Management System

31

characteristics. It has been done in such a

way that data about that category’s assets

already in the inventory are not hampered.

GenerateChallan.jsx Page This is the third step in the ordering

process. It involves creating the entire

customer invoice and either submitting it to

create challan or saving it as challan draft.

The user is capable of selecting a challan

type, selecting customer, his address,

contact information and then creating the

order by entering rental begin date, unit

price etc.

InsertCustomer.jsx Page Add

Customer

This page is used to enter the customer

information of the client company’s

customers. Name, Pan No and dynamic

address insertion is possible. Multiple

addresses can be entered while provisions

have been provided to enter multiple

contact person information. Validation is

provided on all fields so as to ensure no

erroneous data is entered.

ManageCustomer.jsx Page Manage

Customer

This page is utilised to edit the various

customer details.

RemoveAsset.jsx Page This page is utilised to remove asset

attributes. For example if an asset Desktop

has a 4GB RAM which needed to be

replaced or taken out we can utilise this

page to remove that attribute. This asset

attribute can then be added into the existing

inventory as a RAM.

ReturnAssets.jsx Page Manage

Inventory

This page is used to manage the inventory

by processing the returned assets from the

customer, checking them for damages and

appropriately detailing them and also

configuring assembled assets.

Challan.jsx Component This component is used to render the

challan for print out. The challan is

designed in accordance with the manual

challans used by the client company.

Header.jsx Component This component is used to render the blue

Software Design Document Rental Inventory Management System

32

header on top of each page containing the

company logo and name.

SideMenu.jsx Component This component is used to render the side-

menu which contains the quick navigation

for all pages. It is opened by clicking the

hamburger menu on the top left corner of

the pages.

AssetCard.jsx Component This component is the second step of the

ordering process. It is used to render the

chosen assets in the form of cards. There

they can be chosen for assembly before

sending them for rental or other purposes.

Miscellaneous

JS/CSS Type Purpose

App.css CSS CSS file to design the pages

and the associated headers.

App.js JS JS file of the application

which contains the

browserrouter and the

switches. Any page link

which we want to utilise in

our app needs to be added

here to be accessed in our

code.

index.css CSS CSS file to design the side

menu and the hamburger

menu.

Server (index.js) JS Contained as a separate

project this file contains the

apis written for the backend.

The project resides in heroku

and has been added as a

dependency in the

package.json file of our

project. The index.js is used

to write the apis using

Software Design Document Rental Inventory Management System

33

Node.js.

Software Design Document Rental Inventory Management System

34

5: Requirements Traceability

The software requirements are defined as the descriptions of the various features and

functionalities of the proposed system. Requirements convey the expectations of the users for the

software product. The requirements can be obvious or hidden, known or unknown, expected or

unexpected from client’s point of view. Before the entire design process begins a document

known as SRS (Software Requirements Specification) is created which is basically a collection

of all the customer’s proposed requirements which are collected in the form of a comprehensive

and concise document. As with all projects, this project too contains an SRS. The functional and

non-functional requirements from the SRS document are provided here.

Functional Requirements:

Functional Requirements are calculations, technical information, processed data and

functionalities that define what the system is supposed to or is going to accomplish.

Following are the functional requirements for the proposed system.

➢ Interface Requirements: Properly detailed screens maintaining a professional profile of

a page without exhaustive designs so as to maintain the decorum of office space while

maintaining an user friendly approach, easily grasped by the users. Large use of autocomplete

fields are are done so as to make the work of the office staff easier, who will deal in serial

numbers of 1000s of assets. The order page includes multiple filters to make searching for

multiple data simultaneously easier. Large scale use of Loaders ensure that data transaction

maintains a graphical interface. Validation of fields is provided with proper labels to guide the

user when they go wrong. Extensive use of date-pickers enable the users to work with date type

data easily. Also react-print is used to interface with external printer device for easy print of

challan form.

➢ Business Requirements: Data validation enables that only valid and constrained data

will be transferred using the backend. Transaction blocks are heavily imposed to maintain the

ACID properties of database transactions so that huge amount of data transfer isn’t made a slave

to faulty internet connections leading to frequent inconsistent data. The frontend (React.js) and

the backend (Node.js) will work asynchronously ensuring fast data transfer.

➢ Regulatory/Compliance Requirements: The product has been studied extensively

and no legal complications have arisen. Data is to be stored in the database at a secure server

protecting the various asset and customer information. Each page is secured and data transfer is

smooth and safe ensuring that no sensitive data is leaked. The product is made after complying

with every company protocol and following every regulation necessary.

Software Design Document Rental Inventory Management System

35

➢ Risks: To reduce the circumstances under which the requirements may not be satisfied,

all the designers must have an idea of developing websites previously and they must be aware of

html restrictions and cross browser implementations before starting the design. In order to reduce

the probability of this occurrence, the entire design team must have basic knowledge of React.js,

Node.js and MySQL in general and JavaScript in particular.

➢ Technical Issues: In order to satisfy this requirement design should be simple and all

the different interfaces should follow a standard template. A proper standard is maintained for

colours and design so that switching between web pages is a relatively user friendly experience.

Non Functional Requirements:

As opposed to functional requirements, non functional requirements are those categories of

requirements by which we can judge the operations of the system rather then what the system is

supposed to do or rather what the system does. The non functional requirements are closely

related to system architecture as opposed to functional requirements that specify the system

design. Following are the set of non functional requirements identified for the project.

➢ Performance Requirements: The system provides for fast data transaction while

maintaining the ACID property of transactions. Simultaneous access to the system is allowed

while ensuing data integrity and consistency. Furthermore the durability and recoverability of the

stored data is necessary for data security.

➢ Availability and Reliability: The software system ensures that no data is overwritten

under any circumstances. All data is backed up in the database ensuring that all data persists in

the database. Any data which is updated will be referenced by the updated timestamp from the

database.

➢ Security Requirements: Even though there is an absence of login and registration

system, the data is kept fairly secure for intra-office use. The data transfer is done using the

highly reliable and asynchronous Node.js ensuring data consistency and transaction following

ACID properties. The website, server and database are all hosted in secure servers to ensure full

data security. Physical access to the system’s MySQL database will be restricted to only a few

authorized personnel.

Software Design Document Rental Inventory Management System

36

6: User Interface

Dashboard: Containing a brief overview of the current inventory status along with the

customer details. The overview can be both customer specific or asset specific.

Software Design Document Rental Inventory Management System

37

Report after clicking on ‘out of stock’ item under Ram category, which shows the results as

follows.

Software Design Document Rental Inventory Management System

38

Add a new customer to the database which includes their name and pan number along with

multiple address information.

Software Design Document Rental Inventory Management System

39

Panel to add or edit an existing customer’s details such as adding new addresses.

Software Design Document Rental Inventory Management System

40

Add an asset to the inventory specified by their asset type.The Dynamic attributes vary

according to asset’s type and the static attributes are the same for each asset.

Software Design Document Rental Inventory Management System

41

Define a new asset type under which similar types of assets can be categorised in the

inventory.

The order page contains the list of all ‘damaged’,’out of stock’ and ‘in stock’ inventory

items among which only the ‘in stock’ items are selectable for the next ‘add to cart’

process for generating the challan and invoice entries of aforementioned cart items.

Inventory management page for managing various inventory related tasks, like return of

damaged goods, return of verified goods and managing configured goods which are a

coalition of various assets or inventory items.

Software Design Document Rental Inventory Management System

42

Software Design Document Rental Inventory Management System

43

Take a print out of challan after completing customer invoice.

Software Design Document Rental Inventory Management System

44

Validation on insertion fields.

Software Design Document Rental Inventory Management System

45

7: Data Model and Storage
7.1: UML diagrams

7.1.1: Use Case Diagram

Software Design Document Rental Inventory Management System

46

7.1.2: Activity Diagram

Software Design Document Rental Inventory Management System

47

7.2: Functional Diagrams and Algorithm

7.2.1: React Component tree

The following is a simplified representation of the project in a tree structure where each node

represents a React component.

The root of the tree is the app component which is the main component that is rendered by the

application. This component utilizes three other components: Header (which shows the common

header of all the pages), Side menu (which is used for navigation and it can be called by clicking

on the proper button on the header), and finally the BrowserRouter which router to all the web

pages.

The children to the BrowserRouter are all the web pages that the BrowserRouter can route to.

Figure: React Component Tree Structure

These pages include Dashboard, AddAset, ManageCustomer, InsertCustomer among others.

Now, each of these web pages, which are React components utilize other sub components as

well. For example OrderAsset component utilizes the sub components: AssetCard to display cart

items, GenerateChallan to show challan form and Challan to display the challan and print it.

7.2.2: Data Flow Diagram

Level-0

(Context Level Diagram)

Software Design Document Rental Inventory Management System

48

Software Design Document Rental Inventory Management System

49

Level-1

Software Design Document Rental Inventory Management System

50

Level-2

Software Design Document Rental Inventory Management System

51

Level-3

Software Design Document Rental Inventory Management System

52

7.2.3: E-R Diagram

The following is the entity relationship diagram of the Rental Inventory Management System

database. The entities are described in detail on section 4.1: Database Architecture. This ER

diagram illustrates the relationships between the entities.

Figure: Entity-Relationship diagram of Rental Inventory Management System

Software Design Document Rental Inventory Management System

53

7.2.4: Flowcharts and Algorithms

Add a new Customer

Software Design Document Rental Inventory Management System

54

Algorithm:

Step 1: User enters customer details

Step 2: If user selects ‘add address’ then

If previous address form is filled then

Add new address form

Goto step 1

End if

 End if

Step 3: If user selects ‘remove address’ then

If this is not the last address form then

Remove that address form

Goto step 1

End if

 End if

Step 4: If user selects ‘submit customer’ then

If all form inputs are valid then

Submit customer details to server

Goto step 5

Else

 Mark the invalid inputs

 Goto step 1

End if

 End if

Step 5: End

Software Design Document Rental Inventory Management System

55

Manage a Customer

Flowchart:

Software Design Document Rental Inventory Management System

56

Algorithm:

Step 1: Populate autocomplete drop down with customer names

Step 2: User chooses customer name [by autocomplete searching].

Step 3: Populate the form with previously saved details of the chosen customer

Step 3: If ‘add new address’ is selected then:

 Call addNewAddress module

 End if

Step 4: User inputs all the form fields [user cannot edit non-editable ones]

Step 5: If user selects ‘submit’ then:

If all the inputs are valid then:

 Submit modified customer details to server

 Else

 Show error message

 End if

 End if

Step 6: End

Software Design Document Rental Inventory Management System

57

Add new Address to Customer

Flowchart:

Software Design Document Rental Inventory Management System

58

Algorithm:

Step 1: Populate autocomplete drop down with customer names

Step 2: User chooses customer name [by autocomplete searching].

Step 3: Populate the form with previously saved details of the chosen customer

Step 4: User enters address details

Step 5: If user selects ‘add address’ then

If previous address form is filled then

Add new address form

Goto step 1

End if

 End if

Step 6: If user selects ‘remove address’ then

If this is not the last address form then

Remove that address form

Goto step 1

End if

 End if

Step 7: If user selects ‘submit customer’ then

If all form inputs are valid then

Submit customer details to server

Goto step 8

Else

 Mark the invalid inputs

 Goto step 1

End if

 End if

Step 8: End

Software Design Document Rental Inventory Management System

59

Add assets to Inventory

Software Design Document Rental Inventory Management System

60

Algorithm:

Step 1: if the user clicks ‘add new asset type’ then:

a. User enters new asset type name

b. User enters attribute names of the asset type

c. User submits asset type

d. New asset type is sent to server and recorded in database.

 End if

Step 2: Populate asset type dropdown with defined asset types.

Step 3: Create the dynamic attributes form based on the asset type selected.

Step 4: User enters all the static and dynamic attribute values of the asset(s).

Step 5: User clicks ‘submit’

Step 6: If all inputs are valid then:

 Send the asset details along with one or more serial numbers to server.

 Else if

 Show error message

 End if

Step 7: End

Software Design Document Rental Inventory Management System

61

Order an Asset (Flowchart)

Algorithm

Software Design Document Rental Inventory Management System

62

Step 1: User selects an asset category

Step 2: Display asset list table of that category

Step 4: If 'Add asset' is selected then:

a. User selects an asset to modify

b. Choose assets to be added to the selected asset

c. Save configuration details on database

 End if

Step 5: If 'Remove Asset' is selected then:

a. Allow user to remove an attribute from an asset

b. Save configuration details

c. Prompt user to add the removed attribute as new asset

d. Save new asset to database

 End if

Step 6: If User enters filter parameters then:

 Filter asset list table according to the parameters

 End if

Step 7: User chooses assets to be added to cart

Step 8: User ‘checks out’ the cart

Step 9: Display all car items

Step 10: If User chooses to assemble an asset then:

a. User chooses assets to be added to the selected asset

b. Tag the asset to be ‘modified’

 End if

Step 11: User clicks 'submit'

Step 12: Display generate challan page

Step 13: User fills in challan details

Step 14: If User chooses to assemble an asset then:

 Save the challan to database

 End if

Step 15: Validate the inputs

Step 16: Submit the order details to the server

Step 17: Print the challan

Step 18: End

Manage Inventory

Flowchart:

Software Design Document Rental Inventory Management System

63

Algorithm:

Step 1: If ‘Manage returned assets’ selected then:

a. User selects customer

b. Show assets rented to that customer

Software Design Document Rental Inventory Management System

64

c. User selects assets from list

d. Selected assets are returned

 End if

Step 2: If ‘Manage modified components’ selected then:

a. User selects a serial number

b. Remove button is clicked

c. Remove the component from that asset

 End if

Step 3: If ‘Manage damaged components’ selected then:

d. User selects a serial number

e. ‘Mark as damaged’ button is clicked

f. Mark the Asset as damaged on record

 End if

Step 4: End

Software Design Document Rental Inventory Management System

65

8: Advantages and Disadvantages of the Proposed System

Advantages:

The following advantages were identified for the proposed system:

❏ The front end is developed in React.js which makes it easy and fast to render

components, as well as providing various maintainability and scalability features.

❏ The back end developed using Node.js provides the distinct advantage of fast data

transfer for real time web applications with zero headache regarding sync issues.

❏ The system is an upgrade over their existing windows application using visual basic and

SQL server which had limited capability and no functionality regarding preparing order

challans and creating invoices. In fact there is no provision for creating reports for daily

activities.

❏ MySQL used to create the database provides a free, flexible, easy to use database with

very simple query and table editors.

❏ The website is lightweight and highly secure ensuring data integrity for various intra-

office functionalities.

Disadvantages:

The following disadvantages were identified for the proposed system:

❏ The React.js is just a view layer which means Node.js will run completely asynchronous

to React which can be a bit of a problem if the coder is not careful.

❏ The learning curve for React.js can be steep and as it is relatively a new technology,

useful information on the internet can be hard to come across.

❏ There is no provision for a login module as the client has no such setup and hence in

version one there is a stark absence of login and registration systems which ensure a

reduced profile security. All users are classified as employees and there is no distinction

between admin and user modules.

❏ It may be necessary to shift to a NoSQL database later on like MongoDB as other

complicated features get added to later versions like Payment and Notification features.

Software Design Document Rental Inventory Management System

66

9: Future Scope

The proposed system and the document concerns the first version of the project ‘Rental

Inventory Management System’ that we have been required to built during our tenure of

internship. The first version of the system is basically a vast upgrade on the existing system of

inventory management used by the client company ‘Computer Exchange’. The system obviously

has a lot of potential and has been built in such a way that there remains a vast room for

expansion for future versions. A lot more functionalities has been proposed but has not been

integrated into the system as of yet. The project itself has been built as a sort of a template which

can be incorporated as just about any inventory management system there is. Here are a few

functionalities which can be added into future versions of this system.

❖ There was no requirement for a login module by the clients and hence this system has no

login and registration system; but as just about any website and also keeping in mind the

concerns for data security and to categorise different types of users, a login module may

become necessary in the future. Incorporating it into the project will be fairly easy but

there must be a requirement for session management which can be brought about by

using Redux.

❖ The client has mentioned a possibility of adding a payment portal in the future

expansions of the system. The payment portal can be especially useful to accept payment

in the form of cards or netbanking while preparing orders. Right now the payment has to

be completed manually by the customers. Incorporating a payment portal will add greater

dynamic, ensuring that the customer need not be involved physically, even in the rental

order stage.

❖ The client has also mentioned a need for a notification manager in the system which

hasn’t been included in the first version of the project. The principality of the notification

manager is to alert the employees associated with orders and inventory management

when a particular customer’s rental period is about to end. It may be done in the form of

messages on the website or in the form of alert boxes. So to fulfill this a notification

system must be incorporated into the existing system.

Software Design Document Rental Inventory Management System

67

10: Conclusion

The system has been built keeping in mind the various sensibilities and requirements of our

client ‘Computer Exchange’. The challenging part of the project was to go ahead and build the

project using relatively newer technologies such as React.js and Node.js which made the system

design and coding easier, as opposed to building the project using Java. The main aim of the

project has always been to provide the client with a much improved inventory management

system so as to further automate their daily activities with a zero tolerance for errors. A good

inventory management system is essential for smooth functioning of the organisation This

system seeks to address those issues at hand by providing a robust inventory management system

for intra-office purposes.

Software Design Document Rental Inventory Management System

68

11: Bibliography

References:

● https://stackoverflow.com/

● https://www.scribd.com/

● https://reactjs.org/docs

● https://nodejs.org/en/docs/

● https://devcenter.heroku.com/categories/reference

https://stackoverflow.com/
https://www.scribd.com/
https://reactjs.org/docs
https://nodejs.org/en/docs/
https://devcenter.heroku.com/categories/reference

